1
mirror of https://gerrit.googlesource.com/git-repo synced 2025-01-22 16:14:28 +00:00
git-repo/command.py
Mike Frysinger df8b1cba47 man: make output system independent
The current help output might change based on the number of CPU cores
available (since it reflects the dynamic --jobs logic).  This is good
for users running repo locally, but not good for shipping static man
pages.  Hook the help output to have it generate the same output all
the time.

Change-Id: I3098ceddc0ad914b0b8e3b25d660b5a264cb41ee
Reviewed-on: https://gerrit-review.googlesource.com/c/git-repo/+/312882
Reviewed-by: Roger Shimizu <rosh@debian.org>
Reviewed-by: Mike Frysinger <vapier@google.com>
Tested-by: Mike Frysinger <vapier@google.com>
2021-07-31 11:39:35 +00:00

374 lines
12 KiB
Python

# Copyright (C) 2008 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import multiprocessing
import os
import optparse
import re
import sys
from event_log import EventLog
from error import NoSuchProjectError
from error import InvalidProjectGroupsError
import progress
# Are we generating man-pages?
GENERATE_MANPAGES = os.environ.get('_REPO_GENERATE_MANPAGES_') == ' indeed! '
# Number of projects to submit to a single worker process at a time.
# This number represents a tradeoff between the overhead of IPC and finer
# grained opportunity for parallelism. This particular value was chosen by
# iterating through powers of two until the overall performance no longer
# improved. The performance of this batch size is not a function of the
# number of cores on the system.
WORKER_BATCH_SIZE = 32
# How many jobs to run in parallel by default? This assumes the jobs are
# largely I/O bound and do not hit the network.
DEFAULT_LOCAL_JOBS = min(os.cpu_count(), 8)
class Command(object):
"""Base class for any command line action in repo.
"""
# Singleton for all commands to track overall repo command execution and
# provide event summary to callers. Only used by sync subcommand currently.
#
# NB: This is being replaced by git trace2 events. See git_trace2_event_log.
event_log = EventLog()
# Whether this command is a "common" one, i.e. whether the user would commonly
# use it or it's a more uncommon command. This is used by the help command to
# show short-vs-full summaries.
COMMON = False
# Whether this command supports running in parallel. If greater than 0,
# it is the number of parallel jobs to default to.
PARALLEL_JOBS = None
def __init__(self, repodir=None, client=None, manifest=None, gitc_manifest=None,
git_event_log=None):
self.repodir = repodir
self.client = client
self.manifest = manifest
self.gitc_manifest = gitc_manifest
self.git_event_log = git_event_log
# Cache for the OptionParser property.
self._optparse = None
def WantPager(self, _opt):
return False
def ReadEnvironmentOptions(self, opts):
""" Set options from environment variables. """
env_options = self._RegisteredEnvironmentOptions()
for env_key, opt_key in env_options.items():
# Get the user-set option value if any
opt_value = getattr(opts, opt_key)
# If the value is set, it means the user has passed it as a command
# line option, and we should use that. Otherwise we can try to set it
# with the value from the corresponding environment variable.
if opt_value is not None:
continue
env_value = os.environ.get(env_key)
if env_value is not None:
setattr(opts, opt_key, env_value)
return opts
@property
def OptionParser(self):
if self._optparse is None:
try:
me = 'repo %s' % self.NAME
usage = self.helpUsage.strip().replace('%prog', me)
except AttributeError:
usage = 'repo %s' % self.NAME
epilog = 'Run `repo help %s` to view the detailed manual.' % self.NAME
self._optparse = optparse.OptionParser(usage=usage, epilog=epilog)
self._CommonOptions(self._optparse)
self._Options(self._optparse)
return self._optparse
def _CommonOptions(self, p, opt_v=True):
"""Initialize the option parser with common options.
These will show up for *all* subcommands, so use sparingly.
NB: Keep in sync with repo:InitParser().
"""
g = p.add_option_group('Logging options')
opts = ['-v'] if opt_v else []
g.add_option(*opts, '--verbose',
dest='output_mode', action='store_true',
help='show all output')
g.add_option('-q', '--quiet',
dest='output_mode', action='store_false',
help='only show errors')
if self.PARALLEL_JOBS is not None:
default = 'based on number of CPU cores'
if not GENERATE_MANPAGES:
# Only include active cpu count if we aren't generating man pages.
default = f'%default; {default}'
p.add_option(
'-j', '--jobs',
type=int, default=self.PARALLEL_JOBS,
help=f'number of jobs to run in parallel (default: {default})')
def _Options(self, p):
"""Initialize the option parser with subcommand-specific options."""
def _RegisteredEnvironmentOptions(self):
"""Get options that can be set from environment variables.
Return a dictionary mapping environment variable name
to option key name that it can override.
Example: {'REPO_MY_OPTION': 'my_option'}
Will allow the option with key value 'my_option' to be set
from the value in the environment variable named 'REPO_MY_OPTION'.
Note: This does not work properly for options that are explicitly
set to None by the user, or options that are defined with a
default value other than None.
"""
return {}
def Usage(self):
"""Display usage and terminate.
"""
self.OptionParser.print_usage()
sys.exit(1)
def CommonValidateOptions(self, opt, args):
"""Validate common options."""
opt.quiet = opt.output_mode is False
opt.verbose = opt.output_mode is True
def ValidateOptions(self, opt, args):
"""Validate the user options & arguments before executing.
This is meant to help break the code up into logical steps. Some tips:
* Use self.OptionParser.error to display CLI related errors.
* Adjust opt member defaults as makes sense.
* Adjust the args list, but do so inplace so the caller sees updates.
* Try to avoid updating self state. Leave that to Execute.
"""
def Execute(self, opt, args):
"""Perform the action, after option parsing is complete.
"""
raise NotImplementedError
@staticmethod
def ExecuteInParallel(jobs, func, inputs, callback, output=None, ordered=False):
"""Helper for managing parallel execution boiler plate.
For subcommands that can easily split their work up.
Args:
jobs: How many parallel processes to use.
func: The function to apply to each of the |inputs|. Usually a
functools.partial for wrapping additional arguments. It will be run
in a separate process, so it must be pickalable, so nested functions
won't work. Methods on the subcommand Command class should work.
inputs: The list of items to process. Must be a list.
callback: The function to pass the results to for processing. It will be
executed in the main thread and process the results of |func| as they
become available. Thus it may be a local nested function. Its return
value is passed back directly. It takes three arguments:
- The processing pool (or None with one job).
- The |output| argument.
- An iterator for the results.
output: An output manager. May be progress.Progess or color.Coloring.
ordered: Whether the jobs should be processed in order.
Returns:
The |callback| function's results are returned.
"""
try:
# NB: Multiprocessing is heavy, so don't spin it up for one job.
if len(inputs) == 1 or jobs == 1:
return callback(None, output, (func(x) for x in inputs))
else:
with multiprocessing.Pool(jobs) as pool:
submit = pool.imap if ordered else pool.imap_unordered
return callback(pool, output, submit(func, inputs, chunksize=WORKER_BATCH_SIZE))
finally:
if isinstance(output, progress.Progress):
output.end()
def _ResetPathToProjectMap(self, projects):
self._by_path = dict((p.worktree, p) for p in projects)
def _UpdatePathToProjectMap(self, project):
self._by_path[project.worktree] = project
def _GetProjectByPath(self, manifest, path):
project = None
if os.path.exists(path):
oldpath = None
while (path and
path != oldpath and
path != manifest.topdir):
try:
project = self._by_path[path]
break
except KeyError:
oldpath = path
path = os.path.dirname(path)
if not project and path == manifest.topdir:
try:
project = self._by_path[path]
except KeyError:
pass
else:
try:
project = self._by_path[path]
except KeyError:
pass
return project
def GetProjects(self, args, manifest=None, groups='', missing_ok=False,
submodules_ok=False):
"""A list of projects that match the arguments.
"""
if not manifest:
manifest = self.manifest
all_projects_list = manifest.projects
result = []
mp = manifest.manifestProject
if not groups:
groups = manifest.GetGroupsStr()
groups = [x for x in re.split(r'[,\s]+', groups) if x]
if not args:
derived_projects = {}
for project in all_projects_list:
if submodules_ok or project.sync_s:
derived_projects.update((p.name, p)
for p in project.GetDerivedSubprojects())
all_projects_list.extend(derived_projects.values())
for project in all_projects_list:
if (missing_ok or project.Exists) and project.MatchesGroups(groups):
result.append(project)
else:
self._ResetPathToProjectMap(all_projects_list)
for arg in args:
# We have to filter by manifest groups in case the requested project is
# checked out multiple times or differently based on them.
projects = [project for project in manifest.GetProjectsWithName(arg)
if project.MatchesGroups(groups)]
if not projects:
path = os.path.abspath(arg).replace('\\', '/')
project = self._GetProjectByPath(manifest, path)
# If it's not a derived project, update path->project mapping and
# search again, as arg might actually point to a derived subproject.
if (project and not project.Derived and (submodules_ok or
project.sync_s)):
search_again = False
for subproject in project.GetDerivedSubprojects():
self._UpdatePathToProjectMap(subproject)
search_again = True
if search_again:
project = self._GetProjectByPath(manifest, path) or project
if project:
projects = [project]
if not projects:
raise NoSuchProjectError(arg)
for project in projects:
if not missing_ok and not project.Exists:
raise NoSuchProjectError('%s (%s)' % (arg, project.relpath))
if not project.MatchesGroups(groups):
raise InvalidProjectGroupsError(arg)
result.extend(projects)
def _getpath(x):
return x.relpath
result.sort(key=_getpath)
return result
def FindProjects(self, args, inverse=False):
result = []
patterns = [re.compile(r'%s' % a, re.IGNORECASE) for a in args]
for project in self.GetProjects(''):
for pattern in patterns:
match = pattern.search(project.name) or pattern.search(project.relpath)
if not inverse and match:
result.append(project)
break
if inverse and match:
break
else:
if inverse:
result.append(project)
result.sort(key=lambda project: project.relpath)
return result
class InteractiveCommand(Command):
"""Command which requires user interaction on the tty and
must not run within a pager, even if the user asks to.
"""
def WantPager(self, _opt):
return False
class PagedCommand(Command):
"""Command which defaults to output in a pager, as its
display tends to be larger than one screen full.
"""
def WantPager(self, _opt):
return True
class MirrorSafeCommand(object):
"""Command permits itself to run within a mirror,
and does not require a working directory.
"""
class GitcAvailableCommand(object):
"""Command that requires GITC to be available, but does
not require the local client to be a GITC client.
"""
class GitcClientCommand(object):
"""Command that requires the local client to be a GITC
client.
"""