git-repo/froofle/protobuf/reflection.py
The Android Open Source Project cf31fe9b4f Initial Contribution
2008-10-21 07:00:00 -07:00

1654 lines
62 KiB
Python

# Protocol Buffers - Google's data interchange format
# Copyright 2008 Google Inc. All rights reserved.
# http://code.google.com/p/protobuf/
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following disclaimer
# in the documentation and/or other materials provided with the
# distribution.
# * Neither the name of Google Inc. nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# This code is meant to work on Python 2.4 and above only.
#
# TODO(robinson): Helpers for verbose, common checks like seeing if a
# descriptor's cpp_type is CPPTYPE_MESSAGE.
"""Contains a metaclass and helper functions used to create
protocol message classes from Descriptor objects at runtime.
Recall that a metaclass is the "type" of a class.
(A class is to a metaclass what an instance is to a class.)
In this case, we use the GeneratedProtocolMessageType metaclass
to inject all the useful functionality into the classes
output by the protocol compiler at compile-time.
The upshot of all this is that the real implementation
details for ALL pure-Python protocol buffers are *here in
this file*.
"""
__author__ = 'robinson@google.com (Will Robinson)'
import heapq
import threading
import weakref
# We use "as" to avoid name collisions with variables.
from froofle.protobuf.internal import decoder
from froofle.protobuf.internal import encoder
from froofle.protobuf.internal import message_listener as message_listener_mod
from froofle.protobuf.internal import type_checkers
from froofle.protobuf.internal import wire_format
from froofle.protobuf import descriptor as descriptor_mod
from froofle.protobuf import message as message_mod
_FieldDescriptor = descriptor_mod.FieldDescriptor
class GeneratedProtocolMessageType(type):
"""Metaclass for protocol message classes created at runtime from Descriptors.
We add implementations for all methods described in the Message class. We
also create properties to allow getting/setting all fields in the protocol
message. Finally, we create slots to prevent users from accidentally
"setting" nonexistent fields in the protocol message, which then wouldn't get
serialized / deserialized properly.
The protocol compiler currently uses this metaclass to create protocol
message classes at runtime. Clients can also manually create their own
classes at runtime, as in this example:
mydescriptor = Descriptor(.....)
class MyProtoClass(Message):
__metaclass__ = GeneratedProtocolMessageType
DESCRIPTOR = mydescriptor
myproto_instance = MyProtoClass()
myproto.foo_field = 23
...
"""
# Must be consistent with the protocol-compiler code in
# proto2/compiler/internal/generator.*.
_DESCRIPTOR_KEY = 'DESCRIPTOR'
def __new__(cls, name, bases, dictionary):
"""Custom allocation for runtime-generated class types.
We override __new__ because this is apparently the only place
where we can meaningfully set __slots__ on the class we're creating(?).
(The interplay between metaclasses and slots is not very well-documented).
Args:
name: Name of the class (ignored, but required by the
metaclass protocol).
bases: Base classes of the class we're constructing.
(Should be message.Message). We ignore this field, but
it's required by the metaclass protocol
dictionary: The class dictionary of the class we're
constructing. dictionary[_DESCRIPTOR_KEY] must contain
a Descriptor object describing this protocol message
type.
Returns:
Newly-allocated class.
"""
descriptor = dictionary[GeneratedProtocolMessageType._DESCRIPTOR_KEY]
_AddSlots(descriptor, dictionary)
_AddClassAttributesForNestedExtensions(descriptor, dictionary)
superclass = super(GeneratedProtocolMessageType, cls)
return superclass.__new__(cls, name, bases, dictionary)
def __init__(cls, name, bases, dictionary):
"""Here we perform the majority of our work on the class.
We add enum getters, an __init__ method, implementations
of all Message methods, and properties for all fields
in the protocol type.
Args:
name: Name of the class (ignored, but required by the
metaclass protocol).
bases: Base classes of the class we're constructing.
(Should be message.Message). We ignore this field, but
it's required by the metaclass protocol
dictionary: The class dictionary of the class we're
constructing. dictionary[_DESCRIPTOR_KEY] must contain
a Descriptor object describing this protocol message
type.
"""
descriptor = dictionary[GeneratedProtocolMessageType._DESCRIPTOR_KEY]
# We act as a "friend" class of the descriptor, setting
# its _concrete_class attribute the first time we use a
# given descriptor to initialize a concrete protocol message
# class.
concrete_class_attr_name = '_concrete_class'
if not hasattr(descriptor, concrete_class_attr_name):
setattr(descriptor, concrete_class_attr_name, cls)
cls._known_extensions = []
_AddEnumValues(descriptor, cls)
_AddInitMethod(descriptor, cls)
_AddPropertiesForFields(descriptor, cls)
_AddStaticMethods(cls)
_AddMessageMethods(descriptor, cls)
_AddPrivateHelperMethods(cls)
superclass = super(GeneratedProtocolMessageType, cls)
superclass.__init__(cls, name, bases, dictionary)
# Stateless helpers for GeneratedProtocolMessageType below.
# Outside clients should not access these directly.
#
# I opted not to make any of these methods on the metaclass, to make it more
# clear that I'm not really using any state there and to keep clients from
# thinking that they have direct access to these construction helpers.
def _PropertyName(proto_field_name):
"""Returns the name of the public property attribute which
clients can use to get and (in some cases) set the value
of a protocol message field.
Args:
proto_field_name: The protocol message field name, exactly
as it appears (or would appear) in a .proto file.
"""
# TODO(robinson): Escape Python keywords (e.g., yield), and test this support.
# nnorwitz makes my day by writing:
# """
# FYI. See the keyword module in the stdlib. This could be as simple as:
#
# if keyword.iskeyword(proto_field_name):
# return proto_field_name + "_"
# return proto_field_name
# """
return proto_field_name
def _ValueFieldName(proto_field_name):
"""Returns the name of the (internal) instance attribute which objects
should use to store the current value for a given protocol message field.
Args:
proto_field_name: The protocol message field name, exactly
as it appears (or would appear) in a .proto file.
"""
return '_value_' + proto_field_name
def _HasFieldName(proto_field_name):
"""Returns the name of the (internal) instance attribute which
objects should use to store a boolean telling whether this field
is explicitly set or not.
Args:
proto_field_name: The protocol message field name, exactly
as it appears (or would appear) in a .proto file.
"""
return '_has_' + proto_field_name
def _AddSlots(message_descriptor, dictionary):
"""Adds a __slots__ entry to dictionary, containing the names of all valid
attributes for this message type.
Args:
message_descriptor: A Descriptor instance describing this message type.
dictionary: Class dictionary to which we'll add a '__slots__' entry.
"""
field_names = [_ValueFieldName(f.name) for f in message_descriptor.fields]
field_names.extend(_HasFieldName(f.name) for f in message_descriptor.fields
if f.label != _FieldDescriptor.LABEL_REPEATED)
field_names.extend(('Extensions',
'_cached_byte_size',
'_cached_byte_size_dirty',
'_called_transition_to_nonempty',
'_listener',
'_lock', '__weakref__'))
dictionary['__slots__'] = field_names
def _AddClassAttributesForNestedExtensions(descriptor, dictionary):
extension_dict = descriptor.extensions_by_name
for extension_name, extension_field in extension_dict.iteritems():
assert extension_name not in dictionary
dictionary[extension_name] = extension_field
def _AddEnumValues(descriptor, cls):
"""Sets class-level attributes for all enum fields defined in this message.
Args:
descriptor: Descriptor object for this message type.
cls: Class we're constructing for this message type.
"""
for enum_type in descriptor.enum_types:
for enum_value in enum_type.values:
setattr(cls, enum_value.name, enum_value.number)
def _DefaultValueForField(message, field):
"""Returns a default value for a field.
Args:
message: Message instance containing this field, or a weakref proxy
of same.
field: FieldDescriptor object for this field.
Returns: A default value for this field. May refer back to |message|
via a weak reference.
"""
# TODO(robinson): Only the repeated fields need a reference to 'message' (so
# that they can set the 'has' bit on the containing Message when someone
# append()s a value). We could special-case this, and avoid an extra
# function call on __init__() and Clear() for non-repeated fields.
# TODO(robinson): Find a better place for the default value assertion in this
# function. No need to repeat them every time the client calls Clear('foo').
# (We should probably just assert these things once and as early as possible,
# by tightening checking in the descriptor classes.)
if field.label == _FieldDescriptor.LABEL_REPEATED:
if field.default_value != []:
raise ValueError('Repeated field default value not empty list: %s' % (
field.default_value))
listener = _Listener(message, None)
if field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE:
# We can't look at _concrete_class yet since it might not have
# been set. (Depends on order in which we initialize the classes).
return _RepeatedCompositeFieldContainer(listener, field.message_type)
else:
return _RepeatedScalarFieldContainer(
listener, type_checkers.GetTypeChecker(field.cpp_type, field.type))
if field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE:
assert field.default_value is None
return field.default_value
def _AddInitMethod(message_descriptor, cls):
"""Adds an __init__ method to cls."""
fields = message_descriptor.fields
def init(self):
self._cached_byte_size = 0
self._cached_byte_size_dirty = False
self._listener = message_listener_mod.NullMessageListener()
self._called_transition_to_nonempty = False
# TODO(robinson): We should only create a lock if we really need one
# in this class.
self._lock = threading.Lock()
for field in fields:
default_value = _DefaultValueForField(self, field)
python_field_name = _ValueFieldName(field.name)
setattr(self, python_field_name, default_value)
if field.label != _FieldDescriptor.LABEL_REPEATED:
setattr(self, _HasFieldName(field.name), False)
self.Extensions = _ExtensionDict(self, cls._known_extensions)
init.__module__ = None
init.__doc__ = None
cls.__init__ = init
def _AddPropertiesForFields(descriptor, cls):
"""Adds properties for all fields in this protocol message type."""
for field in descriptor.fields:
_AddPropertiesForField(field, cls)
def _AddPropertiesForField(field, cls):
"""Adds a public property for a protocol message field.
Clients can use this property to get and (in the case
of non-repeated scalar fields) directly set the value
of a protocol message field.
Args:
field: A FieldDescriptor for this field.
cls: The class we're constructing.
"""
# Catch it if we add other types that we should
# handle specially here.
assert _FieldDescriptor.MAX_CPPTYPE == 10
if field.label == _FieldDescriptor.LABEL_REPEATED:
_AddPropertiesForRepeatedField(field, cls)
elif field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE:
_AddPropertiesForNonRepeatedCompositeField(field, cls)
else:
_AddPropertiesForNonRepeatedScalarField(field, cls)
def _AddPropertiesForRepeatedField(field, cls):
"""Adds a public property for a "repeated" protocol message field. Clients
can use this property to get the value of the field, which will be either a
_RepeatedScalarFieldContainer or _RepeatedCompositeFieldContainer (see
below).
Note that when clients add values to these containers, we perform
type-checking in the case of repeated scalar fields, and we also set any
necessary "has" bits as a side-effect.
Args:
field: A FieldDescriptor for this field.
cls: The class we're constructing.
"""
proto_field_name = field.name
python_field_name = _ValueFieldName(proto_field_name)
property_name = _PropertyName(proto_field_name)
def getter(self):
return getattr(self, python_field_name)
getter.__module__ = None
getter.__doc__ = 'Getter for %s.' % proto_field_name
# We define a setter just so we can throw an exception with a more
# helpful error message.
def setter(self, new_value):
raise AttributeError('Assignment not allowed to repeated field '
'"%s" in protocol message object.' % proto_field_name)
doc = 'Magic attribute generated for "%s" proto field.' % proto_field_name
setattr(cls, property_name, property(getter, setter, doc=doc))
def _AddPropertiesForNonRepeatedScalarField(field, cls):
"""Adds a public property for a nonrepeated, scalar protocol message field.
Clients can use this property to get and directly set the value of the field.
Note that when the client sets the value of a field by using this property,
all necessary "has" bits are set as a side-effect, and we also perform
type-checking.
Args:
field: A FieldDescriptor for this field.
cls: The class we're constructing.
"""
proto_field_name = field.name
python_field_name = _ValueFieldName(proto_field_name)
has_field_name = _HasFieldName(proto_field_name)
property_name = _PropertyName(proto_field_name)
type_checker = type_checkers.GetTypeChecker(field.cpp_type, field.type)
def getter(self):
return getattr(self, python_field_name)
getter.__module__ = None
getter.__doc__ = 'Getter for %s.' % proto_field_name
def setter(self, new_value):
type_checker.CheckValue(new_value)
setattr(self, has_field_name, True)
self._MarkByteSizeDirty()
self._MaybeCallTransitionToNonemptyCallback()
setattr(self, python_field_name, new_value)
setter.__module__ = None
setter.__doc__ = 'Setter for %s.' % proto_field_name
# Add a property to encapsulate the getter/setter.
doc = 'Magic attribute generated for "%s" proto field.' % proto_field_name
setattr(cls, property_name, property(getter, setter, doc=doc))
def _AddPropertiesForNonRepeatedCompositeField(field, cls):
"""Adds a public property for a nonrepeated, composite protocol message field.
A composite field is a "group" or "message" field.
Clients can use this property to get the value of the field, but cannot
assign to the property directly.
Args:
field: A FieldDescriptor for this field.
cls: The class we're constructing.
"""
# TODO(robinson): Remove duplication with similar method
# for non-repeated scalars.
proto_field_name = field.name
python_field_name = _ValueFieldName(proto_field_name)
has_field_name = _HasFieldName(proto_field_name)
property_name = _PropertyName(proto_field_name)
message_type = field.message_type
def getter(self):
# TODO(robinson): Appropriately scary note about double-checked locking.
field_value = getattr(self, python_field_name)
if field_value is None:
self._lock.acquire()
try:
field_value = getattr(self, python_field_name)
if field_value is None:
field_class = message_type._concrete_class
field_value = field_class()
field_value._SetListener(_Listener(self, has_field_name))
setattr(self, python_field_name, field_value)
finally:
self._lock.release()
return field_value
getter.__module__ = None
getter.__doc__ = 'Getter for %s.' % proto_field_name
# We define a setter just so we can throw an exception with a more
# helpful error message.
def setter(self, new_value):
raise AttributeError('Assignment not allowed to composite field '
'"%s" in protocol message object.' % proto_field_name)
# Add a property to encapsulate the getter.
doc = 'Magic attribute generated for "%s" proto field.' % proto_field_name
setattr(cls, property_name, property(getter, setter, doc=doc))
def _AddStaticMethods(cls):
# TODO(robinson): This probably needs to be thread-safe(?)
def RegisterExtension(extension_handle):
extension_handle.containing_type = cls.DESCRIPTOR
cls._known_extensions.append(extension_handle)
cls.RegisterExtension = staticmethod(RegisterExtension)
def _AddListFieldsMethod(message_descriptor, cls):
"""Helper for _AddMessageMethods()."""
# Ensure that we always list in ascending field-number order.
# For non-extension fields, we can do the sort once, here, at import-time.
# For extensions, we sort on each ListFields() call, though
# we could do better if we have to.
fields = sorted(message_descriptor.fields, key=lambda f: f.number)
has_field_names = (_HasFieldName(f.name) for f in fields)
value_field_names = (_ValueFieldName(f.name) for f in fields)
triplets = zip(has_field_names, value_field_names, fields)
def ListFields(self):
# We need to list all extension and non-extension fields
# together, in sorted order by field number.
# Step 0: Get an iterator over all "set" non-extension fields,
# sorted by field number.
# This iterator yields (field_number, field_descriptor, value) tuples.
def SortedSetFieldsIter():
# Note that triplets is already sorted by field number.
for has_field_name, value_field_name, field_descriptor in triplets:
if field_descriptor.label == _FieldDescriptor.LABEL_REPEATED:
value = getattr(self, _ValueFieldName(field_descriptor.name))
if len(value) > 0:
yield (field_descriptor.number, field_descriptor, value)
elif getattr(self, _HasFieldName(field_descriptor.name)):
value = getattr(self, _ValueFieldName(field_descriptor.name))
yield (field_descriptor.number, field_descriptor, value)
sorted_fields = SortedSetFieldsIter()
# Step 1: Get an iterator over all "set" extension fields,
# sorted by field number.
# This iterator ALSO yields (field_number, field_descriptor, value) tuples.
# TODO(robinson): It's not necessary to repeat this with each
# serialization call. We can do better.
sorted_extension_fields = sorted(
[(f.number, f, v) for f, v in self.Extensions._ListSetExtensions()])
# Step 2: Create a composite iterator that merges the extension-
# and non-extension fields, and that still yields fields in
# sorted order.
all_set_fields = _ImergeSorted(sorted_fields, sorted_extension_fields)
# Step 3: Strip off the field numbers and return.
return [field[1:] for field in all_set_fields]
cls.ListFields = ListFields
def _AddHasFieldMethod(cls):
"""Helper for _AddMessageMethods()."""
def HasField(self, field_name):
try:
return getattr(self, _HasFieldName(field_name))
except AttributeError:
raise ValueError('Protocol message has no "%s" field.' % field_name)
cls.HasField = HasField
def _AddClearFieldMethod(cls):
"""Helper for _AddMessageMethods()."""
def ClearField(self, field_name):
try:
field = self.DESCRIPTOR.fields_by_name[field_name]
except KeyError:
raise ValueError('Protocol message has no "%s" field.' % field_name)
proto_field_name = field.name
python_field_name = _ValueFieldName(proto_field_name)
has_field_name = _HasFieldName(proto_field_name)
default_value = _DefaultValueForField(self, field)
if field.label == _FieldDescriptor.LABEL_REPEATED:
self._MarkByteSizeDirty()
else:
if field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE:
old_field_value = getattr(self, python_field_name)
if old_field_value is not None:
# Snip the old object out of the object tree.
old_field_value._SetListener(None)
if getattr(self, has_field_name):
setattr(self, has_field_name, False)
# Set dirty bit on ourself and parents only if
# we're actually changing state.
self._MarkByteSizeDirty()
setattr(self, python_field_name, default_value)
cls.ClearField = ClearField
def _AddClearExtensionMethod(cls):
"""Helper for _AddMessageMethods()."""
def ClearExtension(self, extension_handle):
self.Extensions._ClearExtension(extension_handle)
cls.ClearExtension = ClearExtension
def _AddClearMethod(cls):
"""Helper for _AddMessageMethods()."""
def Clear(self):
# Clear fields.
fields = self.DESCRIPTOR.fields
for field in fields:
self.ClearField(field.name)
# Clear extensions.
extensions = self.Extensions._ListSetExtensions()
for extension in extensions:
self.ClearExtension(extension[0])
cls.Clear = Clear
def _AddHasExtensionMethod(cls):
"""Helper for _AddMessageMethods()."""
def HasExtension(self, extension_handle):
return self.Extensions._HasExtension(extension_handle)
cls.HasExtension = HasExtension
def _AddEqualsMethod(message_descriptor, cls):
"""Helper for _AddMessageMethods()."""
def __eq__(self, other):
if self is other:
return True
# Compare all fields contained directly in this message.
for field_descriptor in message_descriptor.fields:
label = field_descriptor.label
property_name = _PropertyName(field_descriptor.name)
# Non-repeated field equality requires matching "has" bits as well
# as having an equal value.
if label != _FieldDescriptor.LABEL_REPEATED:
self_has = self.HasField(property_name)
other_has = other.HasField(property_name)
if self_has != other_has:
return False
if not self_has:
# If the "has" bit for this field is False, we must stop here.
# Otherwise we will recurse forever on recursively-defined protos.
continue
if getattr(self, property_name) != getattr(other, property_name):
return False
# Compare the extensions present in both messages.
return self.Extensions == other.Extensions
cls.__eq__ = __eq__
def _AddSetListenerMethod(cls):
"""Helper for _AddMessageMethods()."""
def SetListener(self, listener):
if listener is None:
self._listener = message_listener_mod.NullMessageListener()
else:
self._listener = listener
cls._SetListener = SetListener
def _BytesForNonRepeatedElement(value, field_number, field_type):
"""Returns the number of bytes needed to serialize a non-repeated element.
The returned byte count includes space for tag information and any
other additional space associated with serializing value.
Args:
value: Value we're serializing.
field_number: Field number of this value. (Since the field number
is stored as part of a varint-encoded tag, this has an impact
on the total bytes required to serialize the value).
field_type: The type of the field. One of the TYPE_* constants
within FieldDescriptor.
"""
try:
fn = type_checkers.TYPE_TO_BYTE_SIZE_FN[field_type]
return fn(field_number, value)
except KeyError:
raise message_mod.EncodeError('Unrecognized field type: %d' % field_type)
def _AddByteSizeMethod(message_descriptor, cls):
"""Helper for _AddMessageMethods()."""
def BytesForField(message, field, value):
"""Returns the number of bytes required to serialize a single field
in message. The field may be repeated or not, composite or not.
Args:
message: The Message instance containing a field of the given type.
field: A FieldDescriptor describing the field of interest.
value: The value whose byte size we're interested in.
Returns: The number of bytes required to serialize the current value
of "field" in "message", including space for tags and any other
necessary information.
"""
if _MessageSetField(field):
return wire_format.MessageSetItemByteSize(field.number, value)
field_number, field_type = field.number, field.type
# Repeated fields.
if field.label == _FieldDescriptor.LABEL_REPEATED:
elements = value
else:
elements = [value]
size = sum(_BytesForNonRepeatedElement(element, field_number, field_type)
for element in elements)
return size
fields = message_descriptor.fields
has_field_names = (_HasFieldName(f.name) for f in fields)
zipped = zip(has_field_names, fields)
def ByteSize(self):
if not self._cached_byte_size_dirty:
return self._cached_byte_size
size = 0
# Hardcoded fields first.
for has_field_name, field in zipped:
if (field.label == _FieldDescriptor.LABEL_REPEATED
or getattr(self, has_field_name)):
value = getattr(self, _ValueFieldName(field.name))
size += BytesForField(self, field, value)
# Extensions next.
for field, value in self.Extensions._ListSetExtensions():
size += BytesForField(self, field, value)
self._cached_byte_size = size
self._cached_byte_size_dirty = False
return size
cls.ByteSize = ByteSize
def _MessageSetField(field_descriptor):
"""Checks if a field should be serialized using the message set wire format.
Args:
field_descriptor: Descriptor of the field.
Returns:
True if the field should be serialized using the message set wire format,
false otherwise.
"""
return (field_descriptor.is_extension and
field_descriptor.label != _FieldDescriptor.LABEL_REPEATED and
field_descriptor.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE and
field_descriptor.containing_type.GetOptions().message_set_wire_format)
def _SerializeValueToEncoder(value, field_number, field_descriptor, encoder):
"""Appends the serialization of a single value to encoder.
Args:
value: Value to serialize.
field_number: Field number of this value.
field_descriptor: Descriptor of the field to serialize.
encoder: encoder.Encoder object to which we should serialize this value.
"""
if _MessageSetField(field_descriptor):
encoder.AppendMessageSetItem(field_number, value)
return
try:
method = type_checkers.TYPE_TO_SERIALIZE_METHOD[field_descriptor.type]
method(encoder, field_number, value)
except KeyError:
raise message_mod.EncodeError('Unrecognized field type: %d' %
field_descriptor.type)
def _ImergeSorted(*streams):
"""Merges N sorted iterators into a single sorted iterator.
Each element in streams must be an iterable that yields
its elements in sorted order, and the elements contained
in each stream must all be comparable.
There may be repeated elements in the component streams or
across the streams; the repeated elements will all be repeated
in the merged iterator as well.
I believe that the heapq module at HEAD in the Python
sources has a method like this, but for now we roll our own.
"""
iters = [iter(stream) for stream in streams]
heap = []
for index, it in enumerate(iters):
try:
heap.append((it.next(), index))
except StopIteration:
pass
heapq.heapify(heap)
while heap:
smallest_value, idx = heap[0]
yield smallest_value
try:
next_element = iters[idx].next()
heapq.heapreplace(heap, (next_element, idx))
except StopIteration:
heapq.heappop(heap)
def _AddSerializeToStringMethod(message_descriptor, cls):
"""Helper for _AddMessageMethods()."""
def SerializeToString(self):
# Check if the message has all of its required fields set.
errors = []
if not _InternalIsInitialized(self, errors):
raise message_mod.EncodeError('\n'.join(errors))
return self.SerializePartialToString()
cls.SerializeToString = SerializeToString
def _AddSerializePartialToStringMethod(message_descriptor, cls):
"""Helper for _AddMessageMethods()."""
Encoder = encoder.Encoder
def SerializePartialToString(self):
encoder = Encoder()
# We need to serialize all extension and non-extension fields
# together, in sorted order by field number.
for field_descriptor, field_value in self.ListFields():
if field_descriptor.label == _FieldDescriptor.LABEL_REPEATED:
repeated_value = field_value
else:
repeated_value = [field_value]
for element in repeated_value:
_SerializeValueToEncoder(element, field_descriptor.number,
field_descriptor, encoder)
return encoder.ToString()
cls.SerializePartialToString = SerializePartialToString
def _WireTypeForFieldType(field_type):
"""Given a field type, returns the expected wire type."""
try:
return type_checkers.FIELD_TYPE_TO_WIRE_TYPE[field_type]
except KeyError:
raise message_mod.DecodeError('Unknown field type: %d' % field_type)
def _RecursivelyMerge(field_number, field_type, decoder, message):
"""Decodes a message from decoder into message.
message is either a group or a nested message within some containing
protocol message. If it's a group, we use the group protocol to
deserialize, and if it's a nested message, we use the nested-message
protocol.
Args:
field_number: The field number of message in its enclosing protocol buffer.
field_type: The field type of message. Must be either TYPE_MESSAGE
or TYPE_GROUP.
decoder: Decoder to read from.
message: Message to deserialize into.
"""
if field_type == _FieldDescriptor.TYPE_MESSAGE:
decoder.ReadMessageInto(message)
elif field_type == _FieldDescriptor.TYPE_GROUP:
decoder.ReadGroupInto(field_number, message)
else:
raise message_mod.DecodeError('Unexpected field type: %d' % field_type)
def _DeserializeScalarFromDecoder(field_type, decoder):
"""Deserializes a scalar of the requested type from decoder. field_type must
be a scalar (non-group, non-message) FieldDescriptor.FIELD_* constant.
"""
try:
method = type_checkers.TYPE_TO_DESERIALIZE_METHOD[field_type]
return method(decoder)
except KeyError:
raise message_mod.DecodeError('Unrecognized field type: %d' % field_type)
def _SkipField(field_number, wire_type, decoder):
"""Skips a field with the specified wire type.
Args:
field_number: Tag number of the field to skip.
wire_type: Wire type of the field to skip.
decoder: Decoder used to deserialize the messsage. It must be positioned
just after reading the the tag and wire type of the field.
"""
if wire_type == wire_format.WIRETYPE_VARINT:
decoder.ReadUInt64()
elif wire_type == wire_format.WIRETYPE_FIXED64:
decoder.ReadFixed64()
elif wire_type == wire_format.WIRETYPE_LENGTH_DELIMITED:
decoder.SkipBytes(decoder.ReadInt32())
elif wire_type == wire_format.WIRETYPE_START_GROUP:
_SkipGroup(field_number, decoder)
elif wire_type == wire_format.WIRETYPE_END_GROUP:
pass
elif wire_type == wire_format.WIRETYPE_FIXED32:
decoder.ReadFixed32()
else:
raise message_mod.DecodeError('Unexpected wire type: %d' % wire_type)
def _SkipGroup(group_number, decoder):
"""Skips a nested group from the decoder.
Args:
group_number: Tag number of the group to skip.
decoder: Decoder used to deserialize the message. It must be positioned
exactly at the beginning of the message that should be skipped.
"""
while True:
field_number, wire_type = decoder.ReadFieldNumberAndWireType()
if (wire_type == wire_format.WIRETYPE_END_GROUP and
field_number == group_number):
return
_SkipField(field_number, wire_type, decoder)
def _DeserializeMessageSetItem(message, decoder):
"""Deserializes a message using the message set wire format.
Args:
message: Message to be parsed to.
decoder: The decoder to be used to deserialize encoded data. Note that the
decoder should be positioned just after reading the START_GROUP tag that
began the messageset item.
"""
field_number, wire_type = decoder.ReadFieldNumberAndWireType()
if wire_type != wire_format.WIRETYPE_VARINT or field_number != 2:
raise message_mod.DecodeError(
'Incorrect message set wire format. '
'wire_type: %d, field_number: %d' % (wire_type, field_number))
type_id = decoder.ReadInt32()
field_number, wire_type = decoder.ReadFieldNumberAndWireType()
if wire_type != wire_format.WIRETYPE_LENGTH_DELIMITED or field_number != 3:
raise message_mod.DecodeError(
'Incorrect message set wire format. '
'wire_type: %d, field_number: %d' % (wire_type, field_number))
extension_dict = message.Extensions
extensions_by_number = extension_dict._AllExtensionsByNumber()
if type_id not in extensions_by_number:
_SkipField(field_number, wire_type, decoder)
return
field_descriptor = extensions_by_number[type_id]
value = extension_dict[field_descriptor]
decoder.ReadMessageInto(value)
# Read the END_GROUP tag.
field_number, wire_type = decoder.ReadFieldNumberAndWireType()
if wire_type != wire_format.WIRETYPE_END_GROUP or field_number != 1:
raise message_mod.DecodeError(
'Incorrect message set wire format. '
'wire_type: %d, field_number: %d' % (wire_type, field_number))
def _DeserializeOneEntity(message_descriptor, message, decoder):
"""Deserializes the next wire entity from decoder into message.
The next wire entity is either a scalar or a nested message,
and may also be an element in a repeated field (the wire encoding
is the same).
Args:
message_descriptor: A Descriptor instance describing all fields
in message.
message: The Message instance into which we're decoding our fields.
decoder: The Decoder we're using to deserialize encoded data.
Returns: The number of bytes read from decoder during this method.
"""
initial_position = decoder.Position()
field_number, wire_type = decoder.ReadFieldNumberAndWireType()
extension_dict = message.Extensions
extensions_by_number = extension_dict._AllExtensionsByNumber()
if field_number in message_descriptor.fields_by_number:
# Non-extension field.
field_descriptor = message_descriptor.fields_by_number[field_number]
value = getattr(message, _PropertyName(field_descriptor.name))
def nonextension_setter_fn(scalar):
setattr(message, _PropertyName(field_descriptor.name), scalar)
scalar_setter_fn = nonextension_setter_fn
elif field_number in extensions_by_number:
# Extension field.
field_descriptor = extensions_by_number[field_number]
value = extension_dict[field_descriptor]
def extension_setter_fn(scalar):
extension_dict[field_descriptor] = scalar
scalar_setter_fn = extension_setter_fn
elif wire_type == wire_format.WIRETYPE_END_GROUP:
# We assume we're being parsed as the group that's ended.
return 0
elif (wire_type == wire_format.WIRETYPE_START_GROUP and
field_number == 1 and
message_descriptor.GetOptions().message_set_wire_format):
# A Message Set item.
_DeserializeMessageSetItem(message, decoder)
return decoder.Position() - initial_position
else:
_SkipField(field_number, wire_type, decoder)
return decoder.Position() - initial_position
# If we reach this point, we've identified the field as either
# hardcoded or extension, and set |field_descriptor|, |scalar_setter_fn|,
# and |value| appropriately. Now actually deserialize the thing.
#
# field_descriptor: Describes the field we're deserializing.
# value: The value currently stored in the field to deserialize.
# Used only if the field is composite and/or repeated.
# scalar_setter_fn: A function F such that F(scalar) will
# set a nonrepeated scalar value for this field. Used only
# if this field is a nonrepeated scalar.
field_number = field_descriptor.number
field_type = field_descriptor.type
expected_wire_type = _WireTypeForFieldType(field_type)
if wire_type != expected_wire_type:
# Need to fill in uninterpreted_bytes. Work for the next CL.
raise RuntimeError('TODO(robinson): Wiretype mismatches not handled.')
property_name = _PropertyName(field_descriptor.name)
label = field_descriptor.label
cpp_type = field_descriptor.cpp_type
# Nonrepeated scalar. Just set the field directly.
if (label != _FieldDescriptor.LABEL_REPEATED
and cpp_type != _FieldDescriptor.CPPTYPE_MESSAGE):
scalar_setter_fn(_DeserializeScalarFromDecoder(field_type, decoder))
return decoder.Position() - initial_position
# Nonrepeated composite. Recursively deserialize.
if label != _FieldDescriptor.LABEL_REPEATED:
composite = value
_RecursivelyMerge(field_number, field_type, decoder, composite)
return decoder.Position() - initial_position
# Now we know we're dealing with a repeated field of some kind.
element_list = value
if cpp_type != _FieldDescriptor.CPPTYPE_MESSAGE:
# Repeated scalar.
element_list.append(_DeserializeScalarFromDecoder(field_type, decoder))
return decoder.Position() - initial_position
else:
# Repeated composite.
composite = element_list.add()
_RecursivelyMerge(field_number, field_type, decoder, composite)
return decoder.Position() - initial_position
def _FieldOrExtensionValues(message, field_or_extension):
"""Retrieves the list of values for the specified field or extension.
The target field or extension can be optional, required or repeated, but it
must have value(s) set. The assumption is that the target field or extension
is set (e.g. _HasFieldOrExtension holds true).
Args:
message: Message which contains the target field or extension.
field_or_extension: Field or extension for which the list of values is
required. Must be an instance of FieldDescriptor.
Returns:
A list of values for the specified field or extension. This list will only
contain a single element if the field is non-repeated.
"""
if field_or_extension.is_extension:
value = message.Extensions[field_or_extension]
else:
value = getattr(message, _ValueFieldName(field_or_extension.name))
if field_or_extension.label != _FieldDescriptor.LABEL_REPEATED:
return [value]
else:
# In this case value is a list or repeated values.
return value
def _HasFieldOrExtension(message, field_or_extension):
"""Checks if a message has the specified field or extension set.
The field or extension specified can be optional, required or repeated. If
it is repeated, this function returns True. Otherwise it checks the has bit
of the field or extension.
Args:
message: Message which contains the target field or extension.
field_or_extension: Field or extension to check. This must be a
FieldDescriptor instance.
Returns:
True if the message has a value set for the specified field or extension,
or if the field or extension is repeated.
"""
if field_or_extension.label == _FieldDescriptor.LABEL_REPEATED:
return True
if field_or_extension.is_extension:
return message.HasExtension(field_or_extension)
else:
return message.HasField(field_or_extension.name)
def _IsFieldOrExtensionInitialized(message, field, errors=None):
"""Checks if a message field or extension is initialized.
Args:
message: The message which contains the field or extension.
field: Field or extension to check. This must be a FieldDescriptor instance.
errors: Errors will be appended to it, if set to a meaningful value.
Returns:
True if the field/extension can be considered initialized.
"""
# If the field is required and is not set, it isn't initialized.
if field.label == _FieldDescriptor.LABEL_REQUIRED:
if not _HasFieldOrExtension(message, field):
if errors is not None:
errors.append('Required field %s is not set.' % field.full_name)
return False
# If the field is optional and is not set, or if it
# isn't a submessage then the field is initialized.
if field.label == _FieldDescriptor.LABEL_OPTIONAL:
if not _HasFieldOrExtension(message, field):
return True
if field.cpp_type != _FieldDescriptor.CPPTYPE_MESSAGE:
return True
# The field is set and is either a single or a repeated submessage.
messages = _FieldOrExtensionValues(message, field)
# If all submessages in this field are initialized, the field is
# considered initialized.
for message in messages:
if not _InternalIsInitialized(message, errors):
return False
return True
def _InternalIsInitialized(message, errors=None):
"""Checks if all required fields of a message are set.
Args:
message: The message to check.
errors: If set, initialization errors will be appended to it.
Returns:
True iff the specified message has all required fields set.
"""
fields_and_extensions = []
fields_and_extensions.extend(message.DESCRIPTOR.fields)
fields_and_extensions.extend(
[extension[0] for extension in message.Extensions._ListSetExtensions()])
for field_or_extension in fields_and_extensions:
if not _IsFieldOrExtensionInitialized(message, field_or_extension, errors):
return False
return True
def _AddMergeFromStringMethod(message_descriptor, cls):
"""Helper for _AddMessageMethods()."""
Decoder = decoder.Decoder
def MergeFromString(self, serialized):
decoder = Decoder(serialized)
byte_count = 0
while not decoder.EndOfStream():
bytes_read = _DeserializeOneEntity(message_descriptor, self, decoder)
if not bytes_read:
break
byte_count += bytes_read
return byte_count
cls.MergeFromString = MergeFromString
def _AddIsInitializedMethod(cls):
"""Adds the IsInitialized method to the protocol message class."""
cls.IsInitialized = _InternalIsInitialized
def _MergeFieldOrExtension(destination_msg, field, value):
"""Merges a specified message field into another message."""
property_name = _PropertyName(field.name)
is_extension = field.is_extension
if not is_extension:
destination = getattr(destination_msg, property_name)
elif (field.label == _FieldDescriptor.LABEL_REPEATED or
field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE):
destination = destination_msg.Extensions[field]
# Case 1 - a composite field.
if field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE:
if field.label == _FieldDescriptor.LABEL_REPEATED:
for v in value:
destination.add().MergeFrom(v)
else:
destination.MergeFrom(value)
return
# Case 2 - a repeated field.
if field.label == _FieldDescriptor.LABEL_REPEATED:
for v in value:
destination.append(v)
return
# Case 3 - a singular field.
if is_extension:
destination_msg.Extensions[field] = value
else:
setattr(destination_msg, property_name, value)
def _AddMergeFromMethod(cls):
def MergeFrom(self, msg):
assert msg is not self
for field in msg.ListFields():
_MergeFieldOrExtension(self, field[0], field[1])
cls.MergeFrom = MergeFrom
def _AddMessageMethods(message_descriptor, cls):
"""Adds implementations of all Message methods to cls."""
_AddListFieldsMethod(message_descriptor, cls)
_AddHasFieldMethod(cls)
_AddClearFieldMethod(cls)
_AddClearExtensionMethod(cls)
_AddClearMethod(cls)
_AddHasExtensionMethod(cls)
_AddEqualsMethod(message_descriptor, cls)
_AddSetListenerMethod(cls)
_AddByteSizeMethod(message_descriptor, cls)
_AddSerializeToStringMethod(message_descriptor, cls)
_AddSerializePartialToStringMethod(message_descriptor, cls)
_AddMergeFromStringMethod(message_descriptor, cls)
_AddIsInitializedMethod(cls)
_AddMergeFromMethod(cls)
def _AddPrivateHelperMethods(cls):
"""Adds implementation of private helper methods to cls."""
def MaybeCallTransitionToNonemptyCallback(self):
"""Calls self._listener.TransitionToNonempty() the first time this
method is called. On all subsequent calls, this is a no-op.
"""
if not self._called_transition_to_nonempty:
self._listener.TransitionToNonempty()
self._called_transition_to_nonempty = True
cls._MaybeCallTransitionToNonemptyCallback = (
MaybeCallTransitionToNonemptyCallback)
def MarkByteSizeDirty(self):
"""Sets the _cached_byte_size_dirty bit to true,
and propagates this to our listener iff this was a state change.
"""
if not self._cached_byte_size_dirty:
self._cached_byte_size_dirty = True
self._listener.ByteSizeDirty()
cls._MarkByteSizeDirty = MarkByteSizeDirty
class _Listener(object):
"""MessageListener implementation that a parent message registers with its
child message.
In order to support semantics like:
foo.bar.baz = 23
assert foo.HasField('bar')
...child objects must have back references to their parents.
This helper class is at the heart of this support.
"""
def __init__(self, parent_message, has_field_name):
"""Args:
parent_message: The message whose _MaybeCallTransitionToNonemptyCallback()
and _MarkByteSizeDirty() methods we should call when we receive
TransitionToNonempty() and ByteSizeDirty() messages.
has_field_name: The name of the "has" field that we should set in
the parent message when we receive a TransitionToNonempty message,
or None if there's no "has" field to set. (This will be the case
for child objects in "repeated" fields).
"""
# This listener establishes a back reference from a child (contained) object
# to its parent (containing) object. We make this a weak reference to avoid
# creating cyclic garbage when the client finishes with the 'parent' object
# in the tree.
if isinstance(parent_message, weakref.ProxyType):
self._parent_message_weakref = parent_message
else:
self._parent_message_weakref = weakref.proxy(parent_message)
self._has_field_name = has_field_name
def TransitionToNonempty(self):
try:
if self._has_field_name is not None:
setattr(self._parent_message_weakref, self._has_field_name, True)
# Propagate the signal to our parents iff this is the first field set.
self._parent_message_weakref._MaybeCallTransitionToNonemptyCallback()
except ReferenceError:
# We can get here if a client has kept a reference to a child object,
# and is now setting a field on it, but the child's parent has been
# garbage-collected. This is not an error.
pass
def ByteSizeDirty(self):
try:
self._parent_message_weakref._MarkByteSizeDirty()
except ReferenceError:
# Same as above.
pass
# TODO(robinson): Move elsewhere?
# TODO(robinson): Provide a clear() method here in addition to ClearField()?
class _RepeatedScalarFieldContainer(object):
"""Simple, type-checked, list-like container for holding repeated scalars."""
# Minimizes memory usage and disallows assignment to other attributes.
__slots__ = ['_message_listener', '_type_checker', '_values']
def __init__(self, message_listener, type_checker):
"""
Args:
message_listener: A MessageListener implementation.
The _RepeatedScalarFieldContaininer will call this object's
TransitionToNonempty() method when it transitions from being empty to
being nonempty.
type_checker: A _ValueChecker instance to run on elements inserted
into this container.
"""
self._message_listener = message_listener
self._type_checker = type_checker
self._values = []
def append(self, elem):
self._type_checker.CheckValue(elem)
self._values.append(elem)
self._message_listener.ByteSizeDirty()
if len(self._values) == 1:
self._message_listener.TransitionToNonempty()
def remove(self, elem):
self._values.remove(elem)
self._message_listener.ByteSizeDirty()
# List-like __getitem__() support also makes us iterable (via "iter(foo)"
# or implicitly via "for i in mylist:") for free.
def __getitem__(self, key):
return self._values[key]
def __setitem__(self, key, value):
# No need to call TransitionToNonempty(), since if we're able to
# set the element at this index, we were already nonempty before
# this method was called.
self._message_listener.ByteSizeDirty()
self._type_checker.CheckValue(value)
self._values[key] = value
def __len__(self):
return len(self._values)
def __eq__(self, other):
if self is other:
return True
# Special case for the same type which should be common and fast.
if isinstance(other, self.__class__):
return other._values == self._values
# We are presumably comparing against some other sequence type.
return other == self._values
def __ne__(self, other):
# Can't use != here since it would infinitely recurse.
return not self == other
# TODO(robinson): Move elsewhere?
# TODO(robinson): Provide a clear() method here in addition to ClearField()?
# TODO(robinson): Unify common functionality with
# _RepeatedScalarFieldContaininer?
class _RepeatedCompositeFieldContainer(object):
"""Simple, list-like container for holding repeated composite fields."""
# Minimizes memory usage and disallows assignment to other attributes.
__slots__ = ['_values', '_message_descriptor', '_message_listener']
def __init__(self, message_listener, message_descriptor):
"""Note that we pass in a descriptor instead of the generated directly,
since at the time we construct a _RepeatedCompositeFieldContainer we
haven't yet necessarily initialized the type that will be contained in the
container.
Args:
message_listener: A MessageListener implementation.
The _RepeatedCompositeFieldContainer will call this object's
TransitionToNonempty() method when it transitions from being empty to
being nonempty.
message_descriptor: A Descriptor instance describing the protocol type
that should be present in this container. We'll use the
_concrete_class field of this descriptor when the client calls add().
"""
self._message_listener = message_listener
self._message_descriptor = message_descriptor
self._values = []
def add(self):
new_element = self._message_descriptor._concrete_class()
new_element._SetListener(self._message_listener)
self._values.append(new_element)
self._message_listener.ByteSizeDirty()
self._message_listener.TransitionToNonempty()
return new_element
def __delitem__(self, key):
self._message_listener.ByteSizeDirty()
del self._values[key]
# List-like __getitem__() support also makes us iterable (via "iter(foo)"
# or implicitly via "for i in mylist:") for free.
def __getitem__(self, key):
return self._values[key]
def __len__(self):
return len(self._values)
def __eq__(self, other):
if self is other:
return True
if not isinstance(other, self.__class__):
raise TypeError('Can only compare repeated composite fields against '
'other repeated composite fields.')
return self._values == other._values
def __ne__(self, other):
# Can't use != here since it would infinitely recurse.
return not self == other
# TODO(robinson): Implement, document, and test slicing support.
# TODO(robinson): Move elsewhere? This file is getting pretty ridiculous...
# TODO(robinson): Unify error handling of "unknown extension" crap.
# TODO(robinson): There's so much similarity between the way that
# extensions behave and the way that normal fields behave that it would
# be really nice to unify more code. It's not immediately obvious
# how to do this, though, and I'd rather get the full functionality
# implemented (and, crucially, get all the tests and specs fleshed out
# and passing), and then come back to this thorny unification problem.
# TODO(robinson): Support iteritems()-style iteration over all
# extensions with the "has" bits turned on?
class _ExtensionDict(object):
"""Dict-like container for supporting an indexable "Extensions"
field on proto instances.
Note that in all cases we expect extension handles to be
FieldDescriptors.
"""
class _ExtensionListener(object):
"""Adapts an _ExtensionDict to behave as a MessageListener."""
def __init__(self, extension_dict, handle_id):
self._extension_dict = extension_dict
self._handle_id = handle_id
def TransitionToNonempty(self):
self._extension_dict._SubmessageTransitionedToNonempty(self._handle_id)
def ByteSizeDirty(self):
self._extension_dict._SubmessageByteSizeBecameDirty()
# TODO(robinson): Somewhere, we need to blow up if people
# try to register two extensions with the same field number.
# (And we need a test for this of course).
def __init__(self, extended_message, known_extensions):
"""extended_message: Message instance for which we are the Extensions dict.
known_extensions: Iterable of known extension handles.
These must be FieldDescriptors.
"""
# We keep a weak reference to extended_message, since
# it has a reference to this instance in turn.
self._extended_message = weakref.proxy(extended_message)
# We make a deep copy of known_extensions to avoid any
# thread-safety concerns, since the argument passed in
# is the global (class-level) dict of known extensions for
# this type of message, which could be modified at any time
# via a RegisterExtension() call.
#
# This dict maps from handle id to handle (a FieldDescriptor).
#
# XXX
# TODO(robinson): This isn't good enough. The client could
# instantiate an object in module A, then afterward import
# module B and pass the instance to B.Foo(). If B imports
# an extender of this proto and then tries to use it, B
# will get a KeyError, even though the extension *is* registered
# at the time of use.
# XXX
self._known_extensions = dict((id(e), e) for e in known_extensions)
# Read lock around self._values, which may be modified by multiple
# concurrent readers in the conceptually "const" __getitem__ method.
# So, we grab this lock in every "read-only" method to ensure
# that concurrent read access is safe without external locking.
self._lock = threading.Lock()
# Maps from extension handle ID to current value of that extension.
self._values = {}
# Maps from extension handle ID to a boolean "has" bit, but only
# for non-repeated extension fields.
keys = (id for id, extension in self._known_extensions.iteritems()
if extension.label != _FieldDescriptor.LABEL_REPEATED)
self._has_bits = dict.fromkeys(keys, False)
def __getitem__(self, extension_handle):
"""Returns the current value of the given extension handle."""
# We don't care as much about keeping critical sections short in the
# extension support, since it's presumably much less of a common case.
self._lock.acquire()
try:
handle_id = id(extension_handle)
if handle_id not in self._known_extensions:
raise KeyError('Extension not known to this class')
if handle_id not in self._values:
self._AddMissingHandle(extension_handle, handle_id)
return self._values[handle_id]
finally:
self._lock.release()
def __eq__(self, other):
# We have to grab read locks since we're accessing _values
# in a "const" method. See the comment in the constructor.
if self is other:
return True
self._lock.acquire()
try:
other._lock.acquire()
try:
if self._has_bits != other._has_bits:
return False
# If there's a "has" bit, then only compare values where it is true.
for k, v in self._values.iteritems():
if self._has_bits.get(k, False) and v != other._values[k]:
return False
return True
finally:
other._lock.release()
finally:
self._lock.release()
def __ne__(self, other):
return not self == other
# Note that this is only meaningful for non-repeated, scalar extension
# fields. Note also that we may have to call
# MaybeCallTransitionToNonemptyCallback() when we do successfully set a field
# this way, to set any necssary "has" bits in the ancestors of the extended
# message.
def __setitem__(self, extension_handle, value):
"""If extension_handle specifies a non-repeated, scalar extension
field, sets the value of that field.
"""
handle_id = id(extension_handle)
if handle_id not in self._known_extensions:
raise KeyError('Extension not known to this class')
field = extension_handle # Just shorten the name.
if (field.label == _FieldDescriptor.LABEL_OPTIONAL
and field.cpp_type != _FieldDescriptor.CPPTYPE_MESSAGE):
# It's slightly wasteful to lookup the type checker each time,
# but we expect this to be a vanishingly uncommon case anyway.
type_checker = type_checkers.GetTypeChecker(field.cpp_type, field.type)
type_checker.CheckValue(value)
self._values[handle_id] = value
self._has_bits[handle_id] = True
self._extended_message._MarkByteSizeDirty()
self._extended_message._MaybeCallTransitionToNonemptyCallback()
else:
raise TypeError('Extension is repeated and/or a composite type.')
def _AddMissingHandle(self, extension_handle, handle_id):
"""Helper internal to ExtensionDict."""
# Special handling for non-repeated message extensions, which (like
# normal fields of this kind) are initialized lazily.
# REQUIRES: _lock already held.
cpp_type = extension_handle.cpp_type
label = extension_handle.label
if (cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE
and label != _FieldDescriptor.LABEL_REPEATED):
self._AddMissingNonRepeatedCompositeHandle(extension_handle, handle_id)
else:
self._values[handle_id] = _DefaultValueForField(
self._extended_message, extension_handle)
def _AddMissingNonRepeatedCompositeHandle(self, extension_handle, handle_id):
"""Helper internal to ExtensionDict."""
# REQUIRES: _lock already held.
value = extension_handle.message_type._concrete_class()
value._SetListener(_ExtensionDict._ExtensionListener(self, handle_id))
self._values[handle_id] = value
def _SubmessageTransitionedToNonempty(self, handle_id):
"""Called when a submessage with a given handle id first transitions to
being nonempty. Called by _ExtensionListener.
"""
assert handle_id in self._has_bits
self._has_bits[handle_id] = True
self._extended_message._MaybeCallTransitionToNonemptyCallback()
def _SubmessageByteSizeBecameDirty(self):
"""Called whenever a submessage's cached byte size becomes invalid
(goes from being "clean" to being "dirty"). Called by _ExtensionListener.
"""
self._extended_message._MarkByteSizeDirty()
# We may wish to widen the public interface of Message.Extensions
# to expose some of this private functionality in the future.
# For now, we make all this functionality module-private and just
# implement what we need for serialization/deserialization,
# HasField()/ClearField(), etc.
def _HasExtension(self, extension_handle):
"""Method for internal use by this module.
Returns true iff we "have" this extension in the sense of the
"has" bit being set.
"""
handle_id = id(extension_handle)
# Note that this is different from the other checks.
if handle_id not in self._has_bits:
raise KeyError('Extension not known to this class, or is repeated field.')
return self._has_bits[handle_id]
# Intentionally pretty similar to ClearField() above.
def _ClearExtension(self, extension_handle):
"""Method for internal use by this module.
Clears the specified extension, unsetting its "has" bit.
"""
handle_id = id(extension_handle)
if handle_id not in self._known_extensions:
raise KeyError('Extension not known to this class')
default_value = _DefaultValueForField(self._extended_message,
extension_handle)
if extension_handle.label == _FieldDescriptor.LABEL_REPEATED:
self._extended_message._MarkByteSizeDirty()
else:
cpp_type = extension_handle.cpp_type
if cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE:
if handle_id in self._values:
# Future modifications to this object shouldn't set any
# "has" bits here.
self._values[handle_id]._SetListener(None)
if self._has_bits[handle_id]:
self._has_bits[handle_id] = False
self._extended_message._MarkByteSizeDirty()
if handle_id in self._values:
del self._values[handle_id]
def _ListSetExtensions(self):
"""Method for internal use by this module.
Returns an sequence of all extensions that are currently "set"
in this extension dict. A "set" extension is a repeated extension,
or a non-repeated extension with its "has" bit set.
The returned sequence contains (field_descriptor, value) pairs,
where value is the current value of the extension with the given
field descriptor.
The sequence values are in arbitrary order.
"""
self._lock.acquire() # Read-only methods must lock around self._values.
try:
set_extensions = []
for handle_id, value in self._values.iteritems():
handle = self._known_extensions[handle_id]
if (handle.label == _FieldDescriptor.LABEL_REPEATED
or self._has_bits[handle_id]):
set_extensions.append((handle, value))
return set_extensions
finally:
self._lock.release()
def _AllExtensionsByNumber(self):
"""Method for internal use by this module.
Returns: A dict mapping field_number to (handle, field_descriptor),
for *all* registered extensions for this dict.
"""
# TODO(robinson): Precompute and store this away. Note that we'll have to
# be careful when we move away from having _known_extensions as a
# deep-copied member of this object.
return dict((f.number, f) for f in self._known_extensions.itervalues())