# Protocol Buffers - Google's data interchange format # Copyright 2008 Google Inc. All rights reserved. # http://code.google.com/p/protobuf/ # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # This code is meant to work on Python 2.4 and above only. # # TODO(robinson): Helpers for verbose, common checks like seeing if a # descriptor's cpp_type is CPPTYPE_MESSAGE. """Contains a metaclass and helper functions used to create protocol message classes from Descriptor objects at runtime. Recall that a metaclass is the "type" of a class. (A class is to a metaclass what an instance is to a class.) In this case, we use the GeneratedProtocolMessageType metaclass to inject all the useful functionality into the classes output by the protocol compiler at compile-time. The upshot of all this is that the real implementation details for ALL pure-Python protocol buffers are *here in this file*. """ __author__ = 'robinson@google.com (Will Robinson)' import heapq import threading import weakref # We use "as" to avoid name collisions with variables. from froofle.protobuf.internal import decoder from froofle.protobuf.internal import encoder from froofle.protobuf.internal import message_listener as message_listener_mod from froofle.protobuf.internal import type_checkers from froofle.protobuf.internal import wire_format from froofle.protobuf import descriptor as descriptor_mod from froofle.protobuf import message as message_mod _FieldDescriptor = descriptor_mod.FieldDescriptor class GeneratedProtocolMessageType(type): """Metaclass for protocol message classes created at runtime from Descriptors. We add implementations for all methods described in the Message class. We also create properties to allow getting/setting all fields in the protocol message. Finally, we create slots to prevent users from accidentally "setting" nonexistent fields in the protocol message, which then wouldn't get serialized / deserialized properly. The protocol compiler currently uses this metaclass to create protocol message classes at runtime. Clients can also manually create their own classes at runtime, as in this example: mydescriptor = Descriptor(.....) class MyProtoClass(Message): __metaclass__ = GeneratedProtocolMessageType DESCRIPTOR = mydescriptor myproto_instance = MyProtoClass() myproto.foo_field = 23 ... """ # Must be consistent with the protocol-compiler code in # proto2/compiler/internal/generator.*. _DESCRIPTOR_KEY = 'DESCRIPTOR' def __new__(cls, name, bases, dictionary): """Custom allocation for runtime-generated class types. We override __new__ because this is apparently the only place where we can meaningfully set __slots__ on the class we're creating(?). (The interplay between metaclasses and slots is not very well-documented). Args: name: Name of the class (ignored, but required by the metaclass protocol). bases: Base classes of the class we're constructing. (Should be message.Message). We ignore this field, but it's required by the metaclass protocol dictionary: The class dictionary of the class we're constructing. dictionary[_DESCRIPTOR_KEY] must contain a Descriptor object describing this protocol message type. Returns: Newly-allocated class. """ descriptor = dictionary[GeneratedProtocolMessageType._DESCRIPTOR_KEY] _AddSlots(descriptor, dictionary) _AddClassAttributesForNestedExtensions(descriptor, dictionary) superclass = super(GeneratedProtocolMessageType, cls) return superclass.__new__(cls, name, bases, dictionary) def __init__(cls, name, bases, dictionary): """Here we perform the majority of our work on the class. We add enum getters, an __init__ method, implementations of all Message methods, and properties for all fields in the protocol type. Args: name: Name of the class (ignored, but required by the metaclass protocol). bases: Base classes of the class we're constructing. (Should be message.Message). We ignore this field, but it's required by the metaclass protocol dictionary: The class dictionary of the class we're constructing. dictionary[_DESCRIPTOR_KEY] must contain a Descriptor object describing this protocol message type. """ descriptor = dictionary[GeneratedProtocolMessageType._DESCRIPTOR_KEY] # We act as a "friend" class of the descriptor, setting # its _concrete_class attribute the first time we use a # given descriptor to initialize a concrete protocol message # class. concrete_class_attr_name = '_concrete_class' if not hasattr(descriptor, concrete_class_attr_name): setattr(descriptor, concrete_class_attr_name, cls) cls._known_extensions = [] _AddEnumValues(descriptor, cls) _AddInitMethod(descriptor, cls) _AddPropertiesForFields(descriptor, cls) _AddStaticMethods(cls) _AddMessageMethods(descriptor, cls) _AddPrivateHelperMethods(cls) superclass = super(GeneratedProtocolMessageType, cls) superclass.__init__(cls, name, bases, dictionary) # Stateless helpers for GeneratedProtocolMessageType below. # Outside clients should not access these directly. # # I opted not to make any of these methods on the metaclass, to make it more # clear that I'm not really using any state there and to keep clients from # thinking that they have direct access to these construction helpers. def _PropertyName(proto_field_name): """Returns the name of the public property attribute which clients can use to get and (in some cases) set the value of a protocol message field. Args: proto_field_name: The protocol message field name, exactly as it appears (or would appear) in a .proto file. """ # TODO(robinson): Escape Python keywords (e.g., yield), and test this support. # nnorwitz makes my day by writing: # """ # FYI. See the keyword module in the stdlib. This could be as simple as: # # if keyword.iskeyword(proto_field_name): # return proto_field_name + "_" # return proto_field_name # """ return proto_field_name def _ValueFieldName(proto_field_name): """Returns the name of the (internal) instance attribute which objects should use to store the current value for a given protocol message field. Args: proto_field_name: The protocol message field name, exactly as it appears (or would appear) in a .proto file. """ return '_value_' + proto_field_name def _HasFieldName(proto_field_name): """Returns the name of the (internal) instance attribute which objects should use to store a boolean telling whether this field is explicitly set or not. Args: proto_field_name: The protocol message field name, exactly as it appears (or would appear) in a .proto file. """ return '_has_' + proto_field_name def _AddSlots(message_descriptor, dictionary): """Adds a __slots__ entry to dictionary, containing the names of all valid attributes for this message type. Args: message_descriptor: A Descriptor instance describing this message type. dictionary: Class dictionary to which we'll add a '__slots__' entry. """ field_names = [_ValueFieldName(f.name) for f in message_descriptor.fields] field_names.extend(_HasFieldName(f.name) for f in message_descriptor.fields if f.label != _FieldDescriptor.LABEL_REPEATED) field_names.extend(('Extensions', '_cached_byte_size', '_cached_byte_size_dirty', '_called_transition_to_nonempty', '_listener', '_lock', '__weakref__')) dictionary['__slots__'] = field_names def _AddClassAttributesForNestedExtensions(descriptor, dictionary): extension_dict = descriptor.extensions_by_name for extension_name, extension_field in extension_dict.iteritems(): assert extension_name not in dictionary dictionary[extension_name] = extension_field def _AddEnumValues(descriptor, cls): """Sets class-level attributes for all enum fields defined in this message. Args: descriptor: Descriptor object for this message type. cls: Class we're constructing for this message type. """ for enum_type in descriptor.enum_types: for enum_value in enum_type.values: setattr(cls, enum_value.name, enum_value.number) def _DefaultValueForField(message, field): """Returns a default value for a field. Args: message: Message instance containing this field, or a weakref proxy of same. field: FieldDescriptor object for this field. Returns: A default value for this field. May refer back to |message| via a weak reference. """ # TODO(robinson): Only the repeated fields need a reference to 'message' (so # that they can set the 'has' bit on the containing Message when someone # append()s a value). We could special-case this, and avoid an extra # function call on __init__() and Clear() for non-repeated fields. # TODO(robinson): Find a better place for the default value assertion in this # function. No need to repeat them every time the client calls Clear('foo'). # (We should probably just assert these things once and as early as possible, # by tightening checking in the descriptor classes.) if field.label == _FieldDescriptor.LABEL_REPEATED: if field.default_value != []: raise ValueError('Repeated field default value not empty list: %s' % ( field.default_value)) listener = _Listener(message, None) if field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: # We can't look at _concrete_class yet since it might not have # been set. (Depends on order in which we initialize the classes). return _RepeatedCompositeFieldContainer(listener, field.message_type) else: return _RepeatedScalarFieldContainer( listener, type_checkers.GetTypeChecker(field.cpp_type, field.type)) if field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: assert field.default_value is None return field.default_value def _AddInitMethod(message_descriptor, cls): """Adds an __init__ method to cls.""" fields = message_descriptor.fields def init(self): self._cached_byte_size = 0 self._cached_byte_size_dirty = False self._listener = message_listener_mod.NullMessageListener() self._called_transition_to_nonempty = False # TODO(robinson): We should only create a lock if we really need one # in this class. self._lock = threading.Lock() for field in fields: default_value = _DefaultValueForField(self, field) python_field_name = _ValueFieldName(field.name) setattr(self, python_field_name, default_value) if field.label != _FieldDescriptor.LABEL_REPEATED: setattr(self, _HasFieldName(field.name), False) self.Extensions = _ExtensionDict(self, cls._known_extensions) init.__module__ = None init.__doc__ = None cls.__init__ = init def _AddPropertiesForFields(descriptor, cls): """Adds properties for all fields in this protocol message type.""" for field in descriptor.fields: _AddPropertiesForField(field, cls) def _AddPropertiesForField(field, cls): """Adds a public property for a protocol message field. Clients can use this property to get and (in the case of non-repeated scalar fields) directly set the value of a protocol message field. Args: field: A FieldDescriptor for this field. cls: The class we're constructing. """ # Catch it if we add other types that we should # handle specially here. assert _FieldDescriptor.MAX_CPPTYPE == 10 if field.label == _FieldDescriptor.LABEL_REPEATED: _AddPropertiesForRepeatedField(field, cls) elif field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: _AddPropertiesForNonRepeatedCompositeField(field, cls) else: _AddPropertiesForNonRepeatedScalarField(field, cls) def _AddPropertiesForRepeatedField(field, cls): """Adds a public property for a "repeated" protocol message field. Clients can use this property to get the value of the field, which will be either a _RepeatedScalarFieldContainer or _RepeatedCompositeFieldContainer (see below). Note that when clients add values to these containers, we perform type-checking in the case of repeated scalar fields, and we also set any necessary "has" bits as a side-effect. Args: field: A FieldDescriptor for this field. cls: The class we're constructing. """ proto_field_name = field.name python_field_name = _ValueFieldName(proto_field_name) property_name = _PropertyName(proto_field_name) def getter(self): return getattr(self, python_field_name) getter.__module__ = None getter.__doc__ = 'Getter for %s.' % proto_field_name # We define a setter just so we can throw an exception with a more # helpful error message. def setter(self, new_value): raise AttributeError('Assignment not allowed to repeated field ' '"%s" in protocol message object.' % proto_field_name) doc = 'Magic attribute generated for "%s" proto field.' % proto_field_name setattr(cls, property_name, property(getter, setter, doc=doc)) def _AddPropertiesForNonRepeatedScalarField(field, cls): """Adds a public property for a nonrepeated, scalar protocol message field. Clients can use this property to get and directly set the value of the field. Note that when the client sets the value of a field by using this property, all necessary "has" bits are set as a side-effect, and we also perform type-checking. Args: field: A FieldDescriptor for this field. cls: The class we're constructing. """ proto_field_name = field.name python_field_name = _ValueFieldName(proto_field_name) has_field_name = _HasFieldName(proto_field_name) property_name = _PropertyName(proto_field_name) type_checker = type_checkers.GetTypeChecker(field.cpp_type, field.type) def getter(self): return getattr(self, python_field_name) getter.__module__ = None getter.__doc__ = 'Getter for %s.' % proto_field_name def setter(self, new_value): type_checker.CheckValue(new_value) setattr(self, has_field_name, True) self._MarkByteSizeDirty() self._MaybeCallTransitionToNonemptyCallback() setattr(self, python_field_name, new_value) setter.__module__ = None setter.__doc__ = 'Setter for %s.' % proto_field_name # Add a property to encapsulate the getter/setter. doc = 'Magic attribute generated for "%s" proto field.' % proto_field_name setattr(cls, property_name, property(getter, setter, doc=doc)) def _AddPropertiesForNonRepeatedCompositeField(field, cls): """Adds a public property for a nonrepeated, composite protocol message field. A composite field is a "group" or "message" field. Clients can use this property to get the value of the field, but cannot assign to the property directly. Args: field: A FieldDescriptor for this field. cls: The class we're constructing. """ # TODO(robinson): Remove duplication with similar method # for non-repeated scalars. proto_field_name = field.name python_field_name = _ValueFieldName(proto_field_name) has_field_name = _HasFieldName(proto_field_name) property_name = _PropertyName(proto_field_name) message_type = field.message_type def getter(self): # TODO(robinson): Appropriately scary note about double-checked locking. field_value = getattr(self, python_field_name) if field_value is None: self._lock.acquire() try: field_value = getattr(self, python_field_name) if field_value is None: field_class = message_type._concrete_class field_value = field_class() field_value._SetListener(_Listener(self, has_field_name)) setattr(self, python_field_name, field_value) finally: self._lock.release() return field_value getter.__module__ = None getter.__doc__ = 'Getter for %s.' % proto_field_name # We define a setter just so we can throw an exception with a more # helpful error message. def setter(self, new_value): raise AttributeError('Assignment not allowed to composite field ' '"%s" in protocol message object.' % proto_field_name) # Add a property to encapsulate the getter. doc = 'Magic attribute generated for "%s" proto field.' % proto_field_name setattr(cls, property_name, property(getter, setter, doc=doc)) def _AddStaticMethods(cls): # TODO(robinson): This probably needs to be thread-safe(?) def RegisterExtension(extension_handle): extension_handle.containing_type = cls.DESCRIPTOR cls._known_extensions.append(extension_handle) cls.RegisterExtension = staticmethod(RegisterExtension) def _AddListFieldsMethod(message_descriptor, cls): """Helper for _AddMessageMethods().""" # Ensure that we always list in ascending field-number order. # For non-extension fields, we can do the sort once, here, at import-time. # For extensions, we sort on each ListFields() call, though # we could do better if we have to. fields = sorted(message_descriptor.fields, key=lambda f: f.number) has_field_names = (_HasFieldName(f.name) for f in fields) value_field_names = (_ValueFieldName(f.name) for f in fields) triplets = zip(has_field_names, value_field_names, fields) def ListFields(self): # We need to list all extension and non-extension fields # together, in sorted order by field number. # Step 0: Get an iterator over all "set" non-extension fields, # sorted by field number. # This iterator yields (field_number, field_descriptor, value) tuples. def SortedSetFieldsIter(): # Note that triplets is already sorted by field number. for has_field_name, value_field_name, field_descriptor in triplets: if field_descriptor.label == _FieldDescriptor.LABEL_REPEATED: value = getattr(self, _ValueFieldName(field_descriptor.name)) if len(value) > 0: yield (field_descriptor.number, field_descriptor, value) elif getattr(self, _HasFieldName(field_descriptor.name)): value = getattr(self, _ValueFieldName(field_descriptor.name)) yield (field_descriptor.number, field_descriptor, value) sorted_fields = SortedSetFieldsIter() # Step 1: Get an iterator over all "set" extension fields, # sorted by field number. # This iterator ALSO yields (field_number, field_descriptor, value) tuples. # TODO(robinson): It's not necessary to repeat this with each # serialization call. We can do better. sorted_extension_fields = sorted( [(f.number, f, v) for f, v in self.Extensions._ListSetExtensions()]) # Step 2: Create a composite iterator that merges the extension- # and non-extension fields, and that still yields fields in # sorted order. all_set_fields = _ImergeSorted(sorted_fields, sorted_extension_fields) # Step 3: Strip off the field numbers and return. return [field[1:] for field in all_set_fields] cls.ListFields = ListFields def _AddHasFieldMethod(cls): """Helper for _AddMessageMethods().""" def HasField(self, field_name): try: return getattr(self, _HasFieldName(field_name)) except AttributeError: raise ValueError('Protocol message has no "%s" field.' % field_name) cls.HasField = HasField def _AddClearFieldMethod(cls): """Helper for _AddMessageMethods().""" def ClearField(self, field_name): try: field = self.DESCRIPTOR.fields_by_name[field_name] except KeyError: raise ValueError('Protocol message has no "%s" field.' % field_name) proto_field_name = field.name python_field_name = _ValueFieldName(proto_field_name) has_field_name = _HasFieldName(proto_field_name) default_value = _DefaultValueForField(self, field) if field.label == _FieldDescriptor.LABEL_REPEATED: self._MarkByteSizeDirty() else: if field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: old_field_value = getattr(self, python_field_name) if old_field_value is not None: # Snip the old object out of the object tree. old_field_value._SetListener(None) if getattr(self, has_field_name): setattr(self, has_field_name, False) # Set dirty bit on ourself and parents only if # we're actually changing state. self._MarkByteSizeDirty() setattr(self, python_field_name, default_value) cls.ClearField = ClearField def _AddClearExtensionMethod(cls): """Helper for _AddMessageMethods().""" def ClearExtension(self, extension_handle): self.Extensions._ClearExtension(extension_handle) cls.ClearExtension = ClearExtension def _AddClearMethod(cls): """Helper for _AddMessageMethods().""" def Clear(self): # Clear fields. fields = self.DESCRIPTOR.fields for field in fields: self.ClearField(field.name) # Clear extensions. extensions = self.Extensions._ListSetExtensions() for extension in extensions: self.ClearExtension(extension[0]) cls.Clear = Clear def _AddHasExtensionMethod(cls): """Helper for _AddMessageMethods().""" def HasExtension(self, extension_handle): return self.Extensions._HasExtension(extension_handle) cls.HasExtension = HasExtension def _AddEqualsMethod(message_descriptor, cls): """Helper for _AddMessageMethods().""" def __eq__(self, other): if self is other: return True # Compare all fields contained directly in this message. for field_descriptor in message_descriptor.fields: label = field_descriptor.label property_name = _PropertyName(field_descriptor.name) # Non-repeated field equality requires matching "has" bits as well # as having an equal value. if label != _FieldDescriptor.LABEL_REPEATED: self_has = self.HasField(property_name) other_has = other.HasField(property_name) if self_has != other_has: return False if not self_has: # If the "has" bit for this field is False, we must stop here. # Otherwise we will recurse forever on recursively-defined protos. continue if getattr(self, property_name) != getattr(other, property_name): return False # Compare the extensions present in both messages. return self.Extensions == other.Extensions cls.__eq__ = __eq__ def _AddSetListenerMethod(cls): """Helper for _AddMessageMethods().""" def SetListener(self, listener): if listener is None: self._listener = message_listener_mod.NullMessageListener() else: self._listener = listener cls._SetListener = SetListener def _BytesForNonRepeatedElement(value, field_number, field_type): """Returns the number of bytes needed to serialize a non-repeated element. The returned byte count includes space for tag information and any other additional space associated with serializing value. Args: value: Value we're serializing. field_number: Field number of this value. (Since the field number is stored as part of a varint-encoded tag, this has an impact on the total bytes required to serialize the value). field_type: The type of the field. One of the TYPE_* constants within FieldDescriptor. """ try: fn = type_checkers.TYPE_TO_BYTE_SIZE_FN[field_type] return fn(field_number, value) except KeyError: raise message_mod.EncodeError('Unrecognized field type: %d' % field_type) def _AddByteSizeMethod(message_descriptor, cls): """Helper for _AddMessageMethods().""" def BytesForField(message, field, value): """Returns the number of bytes required to serialize a single field in message. The field may be repeated or not, composite or not. Args: message: The Message instance containing a field of the given type. field: A FieldDescriptor describing the field of interest. value: The value whose byte size we're interested in. Returns: The number of bytes required to serialize the current value of "field" in "message", including space for tags and any other necessary information. """ if _MessageSetField(field): return wire_format.MessageSetItemByteSize(field.number, value) field_number, field_type = field.number, field.type # Repeated fields. if field.label == _FieldDescriptor.LABEL_REPEATED: elements = value else: elements = [value] size = sum(_BytesForNonRepeatedElement(element, field_number, field_type) for element in elements) return size fields = message_descriptor.fields has_field_names = (_HasFieldName(f.name) for f in fields) zipped = zip(has_field_names, fields) def ByteSize(self): if not self._cached_byte_size_dirty: return self._cached_byte_size size = 0 # Hardcoded fields first. for has_field_name, field in zipped: if (field.label == _FieldDescriptor.LABEL_REPEATED or getattr(self, has_field_name)): value = getattr(self, _ValueFieldName(field.name)) size += BytesForField(self, field, value) # Extensions next. for field, value in self.Extensions._ListSetExtensions(): size += BytesForField(self, field, value) self._cached_byte_size = size self._cached_byte_size_dirty = False return size cls.ByteSize = ByteSize def _MessageSetField(field_descriptor): """Checks if a field should be serialized using the message set wire format. Args: field_descriptor: Descriptor of the field. Returns: True if the field should be serialized using the message set wire format, false otherwise. """ return (field_descriptor.is_extension and field_descriptor.label != _FieldDescriptor.LABEL_REPEATED and field_descriptor.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE and field_descriptor.containing_type.GetOptions().message_set_wire_format) def _SerializeValueToEncoder(value, field_number, field_descriptor, encoder): """Appends the serialization of a single value to encoder. Args: value: Value to serialize. field_number: Field number of this value. field_descriptor: Descriptor of the field to serialize. encoder: encoder.Encoder object to which we should serialize this value. """ if _MessageSetField(field_descriptor): encoder.AppendMessageSetItem(field_number, value) return try: method = type_checkers.TYPE_TO_SERIALIZE_METHOD[field_descriptor.type] method(encoder, field_number, value) except KeyError: raise message_mod.EncodeError('Unrecognized field type: %d' % field_descriptor.type) def _ImergeSorted(*streams): """Merges N sorted iterators into a single sorted iterator. Each element in streams must be an iterable that yields its elements in sorted order, and the elements contained in each stream must all be comparable. There may be repeated elements in the component streams or across the streams; the repeated elements will all be repeated in the merged iterator as well. I believe that the heapq module at HEAD in the Python sources has a method like this, but for now we roll our own. """ iters = [iter(stream) for stream in streams] heap = [] for index, it in enumerate(iters): try: heap.append((it.next(), index)) except StopIteration: pass heapq.heapify(heap) while heap: smallest_value, idx = heap[0] yield smallest_value try: next_element = iters[idx].next() heapq.heapreplace(heap, (next_element, idx)) except StopIteration: heapq.heappop(heap) def _AddSerializeToStringMethod(message_descriptor, cls): """Helper for _AddMessageMethods().""" def SerializeToString(self): # Check if the message has all of its required fields set. errors = [] if not _InternalIsInitialized(self, errors): raise message_mod.EncodeError('\n'.join(errors)) return self.SerializePartialToString() cls.SerializeToString = SerializeToString def _AddSerializePartialToStringMethod(message_descriptor, cls): """Helper for _AddMessageMethods().""" Encoder = encoder.Encoder def SerializePartialToString(self): encoder = Encoder() # We need to serialize all extension and non-extension fields # together, in sorted order by field number. for field_descriptor, field_value in self.ListFields(): if field_descriptor.label == _FieldDescriptor.LABEL_REPEATED: repeated_value = field_value else: repeated_value = [field_value] for element in repeated_value: _SerializeValueToEncoder(element, field_descriptor.number, field_descriptor, encoder) return encoder.ToString() cls.SerializePartialToString = SerializePartialToString def _WireTypeForFieldType(field_type): """Given a field type, returns the expected wire type.""" try: return type_checkers.FIELD_TYPE_TO_WIRE_TYPE[field_type] except KeyError: raise message_mod.DecodeError('Unknown field type: %d' % field_type) def _RecursivelyMerge(field_number, field_type, decoder, message): """Decodes a message from decoder into message. message is either a group or a nested message within some containing protocol message. If it's a group, we use the group protocol to deserialize, and if it's a nested message, we use the nested-message protocol. Args: field_number: The field number of message in its enclosing protocol buffer. field_type: The field type of message. Must be either TYPE_MESSAGE or TYPE_GROUP. decoder: Decoder to read from. message: Message to deserialize into. """ if field_type == _FieldDescriptor.TYPE_MESSAGE: decoder.ReadMessageInto(message) elif field_type == _FieldDescriptor.TYPE_GROUP: decoder.ReadGroupInto(field_number, message) else: raise message_mod.DecodeError('Unexpected field type: %d' % field_type) def _DeserializeScalarFromDecoder(field_type, decoder): """Deserializes a scalar of the requested type from decoder. field_type must be a scalar (non-group, non-message) FieldDescriptor.FIELD_* constant. """ try: method = type_checkers.TYPE_TO_DESERIALIZE_METHOD[field_type] return method(decoder) except KeyError: raise message_mod.DecodeError('Unrecognized field type: %d' % field_type) def _SkipField(field_number, wire_type, decoder): """Skips a field with the specified wire type. Args: field_number: Tag number of the field to skip. wire_type: Wire type of the field to skip. decoder: Decoder used to deserialize the messsage. It must be positioned just after reading the the tag and wire type of the field. """ if wire_type == wire_format.WIRETYPE_VARINT: decoder.ReadUInt64() elif wire_type == wire_format.WIRETYPE_FIXED64: decoder.ReadFixed64() elif wire_type == wire_format.WIRETYPE_LENGTH_DELIMITED: decoder.SkipBytes(decoder.ReadInt32()) elif wire_type == wire_format.WIRETYPE_START_GROUP: _SkipGroup(field_number, decoder) elif wire_type == wire_format.WIRETYPE_END_GROUP: pass elif wire_type == wire_format.WIRETYPE_FIXED32: decoder.ReadFixed32() else: raise message_mod.DecodeError('Unexpected wire type: %d' % wire_type) def _SkipGroup(group_number, decoder): """Skips a nested group from the decoder. Args: group_number: Tag number of the group to skip. decoder: Decoder used to deserialize the message. It must be positioned exactly at the beginning of the message that should be skipped. """ while True: field_number, wire_type = decoder.ReadFieldNumberAndWireType() if (wire_type == wire_format.WIRETYPE_END_GROUP and field_number == group_number): return _SkipField(field_number, wire_type, decoder) def _DeserializeMessageSetItem(message, decoder): """Deserializes a message using the message set wire format. Args: message: Message to be parsed to. decoder: The decoder to be used to deserialize encoded data. Note that the decoder should be positioned just after reading the START_GROUP tag that began the messageset item. """ field_number, wire_type = decoder.ReadFieldNumberAndWireType() if wire_type != wire_format.WIRETYPE_VARINT or field_number != 2: raise message_mod.DecodeError( 'Incorrect message set wire format. ' 'wire_type: %d, field_number: %d' % (wire_type, field_number)) type_id = decoder.ReadInt32() field_number, wire_type = decoder.ReadFieldNumberAndWireType() if wire_type != wire_format.WIRETYPE_LENGTH_DELIMITED or field_number != 3: raise message_mod.DecodeError( 'Incorrect message set wire format. ' 'wire_type: %d, field_number: %d' % (wire_type, field_number)) extension_dict = message.Extensions extensions_by_number = extension_dict._AllExtensionsByNumber() if type_id not in extensions_by_number: _SkipField(field_number, wire_type, decoder) return field_descriptor = extensions_by_number[type_id] value = extension_dict[field_descriptor] decoder.ReadMessageInto(value) # Read the END_GROUP tag. field_number, wire_type = decoder.ReadFieldNumberAndWireType() if wire_type != wire_format.WIRETYPE_END_GROUP or field_number != 1: raise message_mod.DecodeError( 'Incorrect message set wire format. ' 'wire_type: %d, field_number: %d' % (wire_type, field_number)) def _DeserializeOneEntity(message_descriptor, message, decoder): """Deserializes the next wire entity from decoder into message. The next wire entity is either a scalar or a nested message, and may also be an element in a repeated field (the wire encoding is the same). Args: message_descriptor: A Descriptor instance describing all fields in message. message: The Message instance into which we're decoding our fields. decoder: The Decoder we're using to deserialize encoded data. Returns: The number of bytes read from decoder during this method. """ initial_position = decoder.Position() field_number, wire_type = decoder.ReadFieldNumberAndWireType() extension_dict = message.Extensions extensions_by_number = extension_dict._AllExtensionsByNumber() if field_number in message_descriptor.fields_by_number: # Non-extension field. field_descriptor = message_descriptor.fields_by_number[field_number] value = getattr(message, _PropertyName(field_descriptor.name)) def nonextension_setter_fn(scalar): setattr(message, _PropertyName(field_descriptor.name), scalar) scalar_setter_fn = nonextension_setter_fn elif field_number in extensions_by_number: # Extension field. field_descriptor = extensions_by_number[field_number] value = extension_dict[field_descriptor] def extension_setter_fn(scalar): extension_dict[field_descriptor] = scalar scalar_setter_fn = extension_setter_fn elif wire_type == wire_format.WIRETYPE_END_GROUP: # We assume we're being parsed as the group that's ended. return 0 elif (wire_type == wire_format.WIRETYPE_START_GROUP and field_number == 1 and message_descriptor.GetOptions().message_set_wire_format): # A Message Set item. _DeserializeMessageSetItem(message, decoder) return decoder.Position() - initial_position else: _SkipField(field_number, wire_type, decoder) return decoder.Position() - initial_position # If we reach this point, we've identified the field as either # hardcoded or extension, and set |field_descriptor|, |scalar_setter_fn|, # and |value| appropriately. Now actually deserialize the thing. # # field_descriptor: Describes the field we're deserializing. # value: The value currently stored in the field to deserialize. # Used only if the field is composite and/or repeated. # scalar_setter_fn: A function F such that F(scalar) will # set a nonrepeated scalar value for this field. Used only # if this field is a nonrepeated scalar. field_number = field_descriptor.number field_type = field_descriptor.type expected_wire_type = _WireTypeForFieldType(field_type) if wire_type != expected_wire_type: # Need to fill in uninterpreted_bytes. Work for the next CL. raise RuntimeError('TODO(robinson): Wiretype mismatches not handled.') property_name = _PropertyName(field_descriptor.name) label = field_descriptor.label cpp_type = field_descriptor.cpp_type # Nonrepeated scalar. Just set the field directly. if (label != _FieldDescriptor.LABEL_REPEATED and cpp_type != _FieldDescriptor.CPPTYPE_MESSAGE): scalar_setter_fn(_DeserializeScalarFromDecoder(field_type, decoder)) return decoder.Position() - initial_position # Nonrepeated composite. Recursively deserialize. if label != _FieldDescriptor.LABEL_REPEATED: composite = value _RecursivelyMerge(field_number, field_type, decoder, composite) return decoder.Position() - initial_position # Now we know we're dealing with a repeated field of some kind. element_list = value if cpp_type != _FieldDescriptor.CPPTYPE_MESSAGE: # Repeated scalar. element_list.append(_DeserializeScalarFromDecoder(field_type, decoder)) return decoder.Position() - initial_position else: # Repeated composite. composite = element_list.add() _RecursivelyMerge(field_number, field_type, decoder, composite) return decoder.Position() - initial_position def _FieldOrExtensionValues(message, field_or_extension): """Retrieves the list of values for the specified field or extension. The target field or extension can be optional, required or repeated, but it must have value(s) set. The assumption is that the target field or extension is set (e.g. _HasFieldOrExtension holds true). Args: message: Message which contains the target field or extension. field_or_extension: Field or extension for which the list of values is required. Must be an instance of FieldDescriptor. Returns: A list of values for the specified field or extension. This list will only contain a single element if the field is non-repeated. """ if field_or_extension.is_extension: value = message.Extensions[field_or_extension] else: value = getattr(message, _ValueFieldName(field_or_extension.name)) if field_or_extension.label != _FieldDescriptor.LABEL_REPEATED: return [value] else: # In this case value is a list or repeated values. return value def _HasFieldOrExtension(message, field_or_extension): """Checks if a message has the specified field or extension set. The field or extension specified can be optional, required or repeated. If it is repeated, this function returns True. Otherwise it checks the has bit of the field or extension. Args: message: Message which contains the target field or extension. field_or_extension: Field or extension to check. This must be a FieldDescriptor instance. Returns: True if the message has a value set for the specified field or extension, or if the field or extension is repeated. """ if field_or_extension.label == _FieldDescriptor.LABEL_REPEATED: return True if field_or_extension.is_extension: return message.HasExtension(field_or_extension) else: return message.HasField(field_or_extension.name) def _IsFieldOrExtensionInitialized(message, field, errors=None): """Checks if a message field or extension is initialized. Args: message: The message which contains the field or extension. field: Field or extension to check. This must be a FieldDescriptor instance. errors: Errors will be appended to it, if set to a meaningful value. Returns: True if the field/extension can be considered initialized. """ # If the field is required and is not set, it isn't initialized. if field.label == _FieldDescriptor.LABEL_REQUIRED: if not _HasFieldOrExtension(message, field): if errors is not None: errors.append('Required field %s is not set.' % field.full_name) return False # If the field is optional and is not set, or if it # isn't a submessage then the field is initialized. if field.label == _FieldDescriptor.LABEL_OPTIONAL: if not _HasFieldOrExtension(message, field): return True if field.cpp_type != _FieldDescriptor.CPPTYPE_MESSAGE: return True # The field is set and is either a single or a repeated submessage. messages = _FieldOrExtensionValues(message, field) # If all submessages in this field are initialized, the field is # considered initialized. for message in messages: if not _InternalIsInitialized(message, errors): return False return True def _InternalIsInitialized(message, errors=None): """Checks if all required fields of a message are set. Args: message: The message to check. errors: If set, initialization errors will be appended to it. Returns: True iff the specified message has all required fields set. """ fields_and_extensions = [] fields_and_extensions.extend(message.DESCRIPTOR.fields) fields_and_extensions.extend( [extension[0] for extension in message.Extensions._ListSetExtensions()]) for field_or_extension in fields_and_extensions: if not _IsFieldOrExtensionInitialized(message, field_or_extension, errors): return False return True def _AddMergeFromStringMethod(message_descriptor, cls): """Helper for _AddMessageMethods().""" Decoder = decoder.Decoder def MergeFromString(self, serialized): decoder = Decoder(serialized) byte_count = 0 while not decoder.EndOfStream(): bytes_read = _DeserializeOneEntity(message_descriptor, self, decoder) if not bytes_read: break byte_count += bytes_read return byte_count cls.MergeFromString = MergeFromString def _AddIsInitializedMethod(cls): """Adds the IsInitialized method to the protocol message class.""" cls.IsInitialized = _InternalIsInitialized def _MergeFieldOrExtension(destination_msg, field, value): """Merges a specified message field into another message.""" property_name = _PropertyName(field.name) is_extension = field.is_extension if not is_extension: destination = getattr(destination_msg, property_name) elif (field.label == _FieldDescriptor.LABEL_REPEATED or field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE): destination = destination_msg.Extensions[field] # Case 1 - a composite field. if field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: if field.label == _FieldDescriptor.LABEL_REPEATED: for v in value: destination.add().MergeFrom(v) else: destination.MergeFrom(value) return # Case 2 - a repeated field. if field.label == _FieldDescriptor.LABEL_REPEATED: for v in value: destination.append(v) return # Case 3 - a singular field. if is_extension: destination_msg.Extensions[field] = value else: setattr(destination_msg, property_name, value) def _AddMergeFromMethod(cls): def MergeFrom(self, msg): assert msg is not self for field in msg.ListFields(): _MergeFieldOrExtension(self, field[0], field[1]) cls.MergeFrom = MergeFrom def _AddMessageMethods(message_descriptor, cls): """Adds implementations of all Message methods to cls.""" _AddListFieldsMethod(message_descriptor, cls) _AddHasFieldMethod(cls) _AddClearFieldMethod(cls) _AddClearExtensionMethod(cls) _AddClearMethod(cls) _AddHasExtensionMethod(cls) _AddEqualsMethod(message_descriptor, cls) _AddSetListenerMethod(cls) _AddByteSizeMethod(message_descriptor, cls) _AddSerializeToStringMethod(message_descriptor, cls) _AddSerializePartialToStringMethod(message_descriptor, cls) _AddMergeFromStringMethod(message_descriptor, cls) _AddIsInitializedMethod(cls) _AddMergeFromMethod(cls) def _AddPrivateHelperMethods(cls): """Adds implementation of private helper methods to cls.""" def MaybeCallTransitionToNonemptyCallback(self): """Calls self._listener.TransitionToNonempty() the first time this method is called. On all subsequent calls, this is a no-op. """ if not self._called_transition_to_nonempty: self._listener.TransitionToNonempty() self._called_transition_to_nonempty = True cls._MaybeCallTransitionToNonemptyCallback = ( MaybeCallTransitionToNonemptyCallback) def MarkByteSizeDirty(self): """Sets the _cached_byte_size_dirty bit to true, and propagates this to our listener iff this was a state change. """ if not self._cached_byte_size_dirty: self._cached_byte_size_dirty = True self._listener.ByteSizeDirty() cls._MarkByteSizeDirty = MarkByteSizeDirty class _Listener(object): """MessageListener implementation that a parent message registers with its child message. In order to support semantics like: foo.bar.baz = 23 assert foo.HasField('bar') ...child objects must have back references to their parents. This helper class is at the heart of this support. """ def __init__(self, parent_message, has_field_name): """Args: parent_message: The message whose _MaybeCallTransitionToNonemptyCallback() and _MarkByteSizeDirty() methods we should call when we receive TransitionToNonempty() and ByteSizeDirty() messages. has_field_name: The name of the "has" field that we should set in the parent message when we receive a TransitionToNonempty message, or None if there's no "has" field to set. (This will be the case for child objects in "repeated" fields). """ # This listener establishes a back reference from a child (contained) object # to its parent (containing) object. We make this a weak reference to avoid # creating cyclic garbage when the client finishes with the 'parent' object # in the tree. if isinstance(parent_message, weakref.ProxyType): self._parent_message_weakref = parent_message else: self._parent_message_weakref = weakref.proxy(parent_message) self._has_field_name = has_field_name def TransitionToNonempty(self): try: if self._has_field_name is not None: setattr(self._parent_message_weakref, self._has_field_name, True) # Propagate the signal to our parents iff this is the first field set. self._parent_message_weakref._MaybeCallTransitionToNonemptyCallback() except ReferenceError: # We can get here if a client has kept a reference to a child object, # and is now setting a field on it, but the child's parent has been # garbage-collected. This is not an error. pass def ByteSizeDirty(self): try: self._parent_message_weakref._MarkByteSizeDirty() except ReferenceError: # Same as above. pass # TODO(robinson): Move elsewhere? # TODO(robinson): Provide a clear() method here in addition to ClearField()? class _RepeatedScalarFieldContainer(object): """Simple, type-checked, list-like container for holding repeated scalars.""" # Minimizes memory usage and disallows assignment to other attributes. __slots__ = ['_message_listener', '_type_checker', '_values'] def __init__(self, message_listener, type_checker): """ Args: message_listener: A MessageListener implementation. The _RepeatedScalarFieldContaininer will call this object's TransitionToNonempty() method when it transitions from being empty to being nonempty. type_checker: A _ValueChecker instance to run on elements inserted into this container. """ self._message_listener = message_listener self._type_checker = type_checker self._values = [] def append(self, elem): self._type_checker.CheckValue(elem) self._values.append(elem) self._message_listener.ByteSizeDirty() if len(self._values) == 1: self._message_listener.TransitionToNonempty() def remove(self, elem): self._values.remove(elem) self._message_listener.ByteSizeDirty() # List-like __getitem__() support also makes us iterable (via "iter(foo)" # or implicitly via "for i in mylist:") for free. def __getitem__(self, key): return self._values[key] def __setitem__(self, key, value): # No need to call TransitionToNonempty(), since if we're able to # set the element at this index, we were already nonempty before # this method was called. self._message_listener.ByteSizeDirty() self._type_checker.CheckValue(value) self._values[key] = value def __len__(self): return len(self._values) def __eq__(self, other): if self is other: return True # Special case for the same type which should be common and fast. if isinstance(other, self.__class__): return other._values == self._values # We are presumably comparing against some other sequence type. return other == self._values def __ne__(self, other): # Can't use != here since it would infinitely recurse. return not self == other # TODO(robinson): Move elsewhere? # TODO(robinson): Provide a clear() method here in addition to ClearField()? # TODO(robinson): Unify common functionality with # _RepeatedScalarFieldContaininer? class _RepeatedCompositeFieldContainer(object): """Simple, list-like container for holding repeated composite fields.""" # Minimizes memory usage and disallows assignment to other attributes. __slots__ = ['_values', '_message_descriptor', '_message_listener'] def __init__(self, message_listener, message_descriptor): """Note that we pass in a descriptor instead of the generated directly, since at the time we construct a _RepeatedCompositeFieldContainer we haven't yet necessarily initialized the type that will be contained in the container. Args: message_listener: A MessageListener implementation. The _RepeatedCompositeFieldContainer will call this object's TransitionToNonempty() method when it transitions from being empty to being nonempty. message_descriptor: A Descriptor instance describing the protocol type that should be present in this container. We'll use the _concrete_class field of this descriptor when the client calls add(). """ self._message_listener = message_listener self._message_descriptor = message_descriptor self._values = [] def add(self): new_element = self._message_descriptor._concrete_class() new_element._SetListener(self._message_listener) self._values.append(new_element) self._message_listener.ByteSizeDirty() self._message_listener.TransitionToNonempty() return new_element def __delitem__(self, key): self._message_listener.ByteSizeDirty() del self._values[key] # List-like __getitem__() support also makes us iterable (via "iter(foo)" # or implicitly via "for i in mylist:") for free. def __getitem__(self, key): return self._values[key] def __len__(self): return len(self._values) def __eq__(self, other): if self is other: return True if not isinstance(other, self.__class__): raise TypeError('Can only compare repeated composite fields against ' 'other repeated composite fields.') return self._values == other._values def __ne__(self, other): # Can't use != here since it would infinitely recurse. return not self == other # TODO(robinson): Implement, document, and test slicing support. # TODO(robinson): Move elsewhere? This file is getting pretty ridiculous... # TODO(robinson): Unify error handling of "unknown extension" crap. # TODO(robinson): There's so much similarity between the way that # extensions behave and the way that normal fields behave that it would # be really nice to unify more code. It's not immediately obvious # how to do this, though, and I'd rather get the full functionality # implemented (and, crucially, get all the tests and specs fleshed out # and passing), and then come back to this thorny unification problem. # TODO(robinson): Support iteritems()-style iteration over all # extensions with the "has" bits turned on? class _ExtensionDict(object): """Dict-like container for supporting an indexable "Extensions" field on proto instances. Note that in all cases we expect extension handles to be FieldDescriptors. """ class _ExtensionListener(object): """Adapts an _ExtensionDict to behave as a MessageListener.""" def __init__(self, extension_dict, handle_id): self._extension_dict = extension_dict self._handle_id = handle_id def TransitionToNonempty(self): self._extension_dict._SubmessageTransitionedToNonempty(self._handle_id) def ByteSizeDirty(self): self._extension_dict._SubmessageByteSizeBecameDirty() # TODO(robinson): Somewhere, we need to blow up if people # try to register two extensions with the same field number. # (And we need a test for this of course). def __init__(self, extended_message, known_extensions): """extended_message: Message instance for which we are the Extensions dict. known_extensions: Iterable of known extension handles. These must be FieldDescriptors. """ # We keep a weak reference to extended_message, since # it has a reference to this instance in turn. self._extended_message = weakref.proxy(extended_message) # We make a deep copy of known_extensions to avoid any # thread-safety concerns, since the argument passed in # is the global (class-level) dict of known extensions for # this type of message, which could be modified at any time # via a RegisterExtension() call. # # This dict maps from handle id to handle (a FieldDescriptor). # # XXX # TODO(robinson): This isn't good enough. The client could # instantiate an object in module A, then afterward import # module B and pass the instance to B.Foo(). If B imports # an extender of this proto and then tries to use it, B # will get a KeyError, even though the extension *is* registered # at the time of use. # XXX self._known_extensions = dict((id(e), e) for e in known_extensions) # Read lock around self._values, which may be modified by multiple # concurrent readers in the conceptually "const" __getitem__ method. # So, we grab this lock in every "read-only" method to ensure # that concurrent read access is safe without external locking. self._lock = threading.Lock() # Maps from extension handle ID to current value of that extension. self._values = {} # Maps from extension handle ID to a boolean "has" bit, but only # for non-repeated extension fields. keys = (id for id, extension in self._known_extensions.iteritems() if extension.label != _FieldDescriptor.LABEL_REPEATED) self._has_bits = dict.fromkeys(keys, False) def __getitem__(self, extension_handle): """Returns the current value of the given extension handle.""" # We don't care as much about keeping critical sections short in the # extension support, since it's presumably much less of a common case. self._lock.acquire() try: handle_id = id(extension_handle) if handle_id not in self._known_extensions: raise KeyError('Extension not known to this class') if handle_id not in self._values: self._AddMissingHandle(extension_handle, handle_id) return self._values[handle_id] finally: self._lock.release() def __eq__(self, other): # We have to grab read locks since we're accessing _values # in a "const" method. See the comment in the constructor. if self is other: return True self._lock.acquire() try: other._lock.acquire() try: if self._has_bits != other._has_bits: return False # If there's a "has" bit, then only compare values where it is true. for k, v in self._values.iteritems(): if self._has_bits.get(k, False) and v != other._values[k]: return False return True finally: other._lock.release() finally: self._lock.release() def __ne__(self, other): return not self == other # Note that this is only meaningful for non-repeated, scalar extension # fields. Note also that we may have to call # MaybeCallTransitionToNonemptyCallback() when we do successfully set a field # this way, to set any necssary "has" bits in the ancestors of the extended # message. def __setitem__(self, extension_handle, value): """If extension_handle specifies a non-repeated, scalar extension field, sets the value of that field. """ handle_id = id(extension_handle) if handle_id not in self._known_extensions: raise KeyError('Extension not known to this class') field = extension_handle # Just shorten the name. if (field.label == _FieldDescriptor.LABEL_OPTIONAL and field.cpp_type != _FieldDescriptor.CPPTYPE_MESSAGE): # It's slightly wasteful to lookup the type checker each time, # but we expect this to be a vanishingly uncommon case anyway. type_checker = type_checkers.GetTypeChecker(field.cpp_type, field.type) type_checker.CheckValue(value) self._values[handle_id] = value self._has_bits[handle_id] = True self._extended_message._MarkByteSizeDirty() self._extended_message._MaybeCallTransitionToNonemptyCallback() else: raise TypeError('Extension is repeated and/or a composite type.') def _AddMissingHandle(self, extension_handle, handle_id): """Helper internal to ExtensionDict.""" # Special handling for non-repeated message extensions, which (like # normal fields of this kind) are initialized lazily. # REQUIRES: _lock already held. cpp_type = extension_handle.cpp_type label = extension_handle.label if (cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE and label != _FieldDescriptor.LABEL_REPEATED): self._AddMissingNonRepeatedCompositeHandle(extension_handle, handle_id) else: self._values[handle_id] = _DefaultValueForField( self._extended_message, extension_handle) def _AddMissingNonRepeatedCompositeHandle(self, extension_handle, handle_id): """Helper internal to ExtensionDict.""" # REQUIRES: _lock already held. value = extension_handle.message_type._concrete_class() value._SetListener(_ExtensionDict._ExtensionListener(self, handle_id)) self._values[handle_id] = value def _SubmessageTransitionedToNonempty(self, handle_id): """Called when a submessage with a given handle id first transitions to being nonempty. Called by _ExtensionListener. """ assert handle_id in self._has_bits self._has_bits[handle_id] = True self._extended_message._MaybeCallTransitionToNonemptyCallback() def _SubmessageByteSizeBecameDirty(self): """Called whenever a submessage's cached byte size becomes invalid (goes from being "clean" to being "dirty"). Called by _ExtensionListener. """ self._extended_message._MarkByteSizeDirty() # We may wish to widen the public interface of Message.Extensions # to expose some of this private functionality in the future. # For now, we make all this functionality module-private and just # implement what we need for serialization/deserialization, # HasField()/ClearField(), etc. def _HasExtension(self, extension_handle): """Method for internal use by this module. Returns true iff we "have" this extension in the sense of the "has" bit being set. """ handle_id = id(extension_handle) # Note that this is different from the other checks. if handle_id not in self._has_bits: raise KeyError('Extension not known to this class, or is repeated field.') return self._has_bits[handle_id] # Intentionally pretty similar to ClearField() above. def _ClearExtension(self, extension_handle): """Method for internal use by this module. Clears the specified extension, unsetting its "has" bit. """ handle_id = id(extension_handle) if handle_id not in self._known_extensions: raise KeyError('Extension not known to this class') default_value = _DefaultValueForField(self._extended_message, extension_handle) if extension_handle.label == _FieldDescriptor.LABEL_REPEATED: self._extended_message._MarkByteSizeDirty() else: cpp_type = extension_handle.cpp_type if cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: if handle_id in self._values: # Future modifications to this object shouldn't set any # "has" bits here. self._values[handle_id]._SetListener(None) if self._has_bits[handle_id]: self._has_bits[handle_id] = False self._extended_message._MarkByteSizeDirty() if handle_id in self._values: del self._values[handle_id] def _ListSetExtensions(self): """Method for internal use by this module. Returns an sequence of all extensions that are currently "set" in this extension dict. A "set" extension is a repeated extension, or a non-repeated extension with its "has" bit set. The returned sequence contains (field_descriptor, value) pairs, where value is the current value of the extension with the given field descriptor. The sequence values are in arbitrary order. """ self._lock.acquire() # Read-only methods must lock around self._values. try: set_extensions = [] for handle_id, value in self._values.iteritems(): handle = self._known_extensions[handle_id] if (handle.label == _FieldDescriptor.LABEL_REPEATED or self._has_bits[handle_id]): set_extensions.append((handle, value)) return set_extensions finally: self._lock.release() def _AllExtensionsByNumber(self): """Method for internal use by this module. Returns: A dict mapping field_number to (handle, field_descriptor), for *all* registered extensions for this dict. """ # TODO(robinson): Precompute and store this away. Note that we'll have to # be careful when we move away from having _known_extensions as a # deep-copied member of this object. return dict((f.number, f) for f in self._known_extensions.itervalues())